Advertisement

Nucleotide Interconversion and Breakdown in the Dually Perfused Guinea Pig Placenta

  • Bernard van Kreel
  • J. P. van Dijk
  • A. M. C. M. Pijnenburg
Chapter
Part of the Trophoblast Research book series (TR)

Abstract

Alterations in placental purine metabolism can occur due to diminished oxygen supply during labor (van Kreel and Wallenburg, 1980; Wallenburg and van Kreel, 1980; van Kreel and van Dijk, 1982). To study purine metabolism in the placenta without interference from other organs perfusion of the isolated placenta, or organ culture of trophoblastic cells can be used (Vettenranta and Raivo, 1984). The first objective of this study was to investigate nucleotide breakdown in placental tissue, and to quantitate the extraction of nucleosides and purines during perfusion under various experimental conditions of oxygen supplementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C., Rankine, D.M., and Talbott, J.H. (1958) The nucleotides in normal human blood. J. Biol. Chem. 234, 1233–1237.Google Scholar
  2. Bloxam, D.L. and Bobinski, P.I.N. (1984) Energy metabolism and glycolysis in the human placenta during ischaemis and in normal labor. Placenta 5, 381–394.PubMedCrossRefGoogle Scholar
  3. Gehrke, C.W., Kuo, K.C., Dares, G.E., and Suits, R.D. (1978) Quantitative high performance liquid chromatography of nucleosides in biological materials. J. Chromat. 150, 455–476.CrossRefGoogle Scholar
  4. Henderson, J.F. and Lepage, G.A. (1959) Transport of adenine 8–14C among mouse tissues by blood cells. J. Biol. Chem. 234, 3219–3223.PubMedGoogle Scholar
  5. Katz, A.M. and Messino, F.C. (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardum. Circ. Res. 48 (1), 1–16.PubMedCrossRefGoogle Scholar
  6. Khym, J.X. (1975) An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchanger. Clin. Chem. 21 (9), 1245–1252.PubMedGoogle Scholar
  7. Leitchweiss, H.G. and Schröder, H. (1971) Untersuchungen uber den glucosetransaport durch die isolierte beiderseits kunstlich perfundierte meerschweinchen placenta. Pflügers Arch fur die Gesamet Physiol. 325, 139.CrossRefGoogle Scholar
  8. MacNeil, M.D. and Koong, L.J. (1983) Improvements to the mathematical description of prenatal growth. Growth 47, 371–380.PubMedGoogle Scholar
  9. Neeley, J.R. and Grotyohann, L.W. (1984) Role of glycolytic products in damage to ischemic myocardum. Circ. Res. 55 (2), 816–824.CrossRefGoogle Scholar
  10. Peeters, L.L. and Wallenburg, H.C.S. (1983) Technique for chronic blood sampling from the ovarian vein in the pregnant guinea pig. Bio. Res. Preg. Prenatal. 5, 188–120.Google Scholar
  11. Peeters, L.L., Martensson, L., van Kreel, B.K., and Wallenburg, H.C.S. (1984) Uterine arterial and venous concentrations of glucose, lactate, ketons, free fatty acids and oxygen in the awake pregnant guinea pig. Ped. Res. 18 (11), 1172–1175.CrossRefGoogle Scholar
  12. Pritchard, J.B., Chaves-Leon, F., and Berlu, R.D. (1970) Purines supply by liver to tissues. Am. J. Physiol. 219, 1263–1267.PubMedGoogle Scholar
  13. Simmons, R.J., Coade, S.B., Harkness, R.A., Drury, L., and Hytten, T. (1982) Nucleotide, nucleoside and purine base concentration in human placentae. Placenta 3, 29–38.CrossRefGoogle Scholar
  14. Thunell, S. (1965) Determination of incorporation of 59Fe in hemin of peripheral red blood cells in bone marrow cultures. Clin. Chim. Acta 11, 321–333.PubMedCrossRefGoogle Scholar
  15. van Kreel, B.K. and Wallenburg, H.C.S. (1980) Hypoxanthine metabolism and transfer in the pregnant Rhesus monkey. J. Develop. Physiol. 2, 365–372.Google Scholar
  16. van Kreel, B.K., van Dijk, J.P., and Pijnenburg, A.M.C.M. (1982) Placental transfer and metabolism of purines and nucleosides in the pregnant guinea pig. Placenta 3, 127–136.PubMedCrossRefGoogle Scholar
  17. van Kreel, B.K. (1985) The estimation of the apparent standard free energy change of a biochemical reaction from the standard free energy of formation and apparent free energy of ionization of the participating molecules and its application to the reactions of the purine metabolism. Biochem. Education 13 (3), 125–130.CrossRefGoogle Scholar
  18. Vettenranta, K. and Raivo, K.O. (1984) Purine reutilization in normal and malignant cells of human placental origin. Placenta 5, 315–322.PubMedCrossRefGoogle Scholar
  19. Wallenburg, H.C.S. and van Kreel, B.K. (1980) Maternal and umbilical plasma concentration of uric acid and oxypurines at delivery in normal and hypertensive pregnancy. Arch. Gynecol. 229, 7–11.PubMedCrossRefGoogle Scholar
  20. Zakaria, M. and Brown, P.R. (1981) High-performance liquid column chromatography of nucleotides, nucleosides and bases. J. Chromat. 226, 267–290.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Bernard van Kreel
    • 1
  • J. P. van Dijk
    • 1
  • A. M. C. M. Pijnenburg
    • 1
  1. 1.Department of Chemical PathologyErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations