Regional and Differential Sensitivity of Umbilico-Placental Vasculature to 5-Hydroxytryptamine, Nicotine, and Ethyl Alcohol

  • B. V. Rama Sastry
  • L. K. Owens
Part of the Trophoblast Research book series (TR)


The fetal blood concentration of 5-hydroxytryptamine (5-HT) increases before birth (Jones and Rowsell, 1973). 5-HT decreases perfusion flow through umbilicoplacental vasculature in isolated human placenta (Gautieri and Ciuchta, 1962). Nicotine is known to release 5-HT from nervous tissues (Goodman and Weiss, 1973; Balfour, 1973; Hery et al., 1977). Among tobacco smokers, nicotine enters fetal circulation from maternal blood. Therefore, a question arises as to whether nictoine releases 5-HT which decreases fetal blood flow through placenta and contributes to fetal hypoxia and growth retardation in tobacco smokers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altura, B.M., Malrya, D., Reich, C.F., and Orkin, L. (1972) Effect of vasoactive agents on isolated human umbilical arteries and veins. Am. J. Physiol. 222, 345–355.PubMedGoogle Scholar
  2. Balfour, D.J.K. (1973) Effects of nicotine on the uptake and retention of 14Cnoradrenaline and 14C-5-hydroxytryptamine by rat brain homogenates. Eur. J. Pharmacol. 23, 19–26.PubMedCrossRefGoogle Scholar
  3. Berman, W., Jr., Goodlin, R.C., Heymann, M.A., and Rudolph, A.M. (1978) Effects of pharmacologic agents on umbilical blood flow in fetal lambs in utero. Biol. Neonate 33, 225–235.PubMedCrossRefGoogle Scholar
  4. Ciuchta, H.P. and Gautieri, R.F. (1964) Effect of certain drugs on perfused human placenta. III. Sympathomimetics, acetylcholine, and histamine. J. Pharmaceutical Sci. 53, 184–188.CrossRefGoogle Scholar
  5. Douglas, W.W. and Rubin, R.P. (1961) Mechanism of nicotinic action at the adrenal medulla: Calcium as a link in stimulus-secretion coupling. Nature 192, 1087 1089.Google Scholar
  6. Eliasson, R. and Astrom, A. (1955) Pharmacological studies on perfused human placenta. Acta Pharmacol. Toxicol. 11, 254–264.CrossRefGoogle Scholar
  7. Eltherington, L.G., Staff, J., Hughes, T., and Melman, K.L. (1968) Constriction of human umbilical arteries: Interaction between oxygen and bradykinin. Circul. Res. 22, 749–752.Google Scholar
  8. Fiscus, R.R. and Dyer, C.C. (1982) Effects of indomethacin on contractility of isolated human umbilical artery. Pharmacol. 24, 328–336.CrossRefGoogle Scholar
  9. Furchgott, R.F. (1983) Role of endothelium in responses of vascular smooth muscle. Circul. Res. 53, 557–573.CrossRefGoogle Scholar
  10. Furchgott, R.F. and Badrakam, S. (1953) Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. J. Pharmacol. Exp. Ther. 108, 129–143.PubMedGoogle Scholar
  11. Gautieri, R.F. and Ciuchta, H.P. (1962) Effect of certain drugs on perfused human placenta. I. Narcotic analgesice, serotonin, and relaxin. J. Pharmaceutical Sci. 51, 55–58.CrossRefGoogle Scholar
  12. Gautieri, R.F. and Mancini, R.T. (1967) Effect of certain drugs on perfused human placenta. VII. Serotonin versus angiotensin II. J. Pharmaceutical Sci. 56, 296–297.CrossRefGoogle Scholar
  13. Goodman, R.F. and Weiss, G.B. (1973) Alteration of 5-hydroxytryptamine-14C efflux by nicotine in rat brain area slices. Neuropharmacol. 12, 955–965.CrossRefGoogle Scholar
  14. Gould, R.J. and Ginsberg, B.H. (1985) Membrane fluidity and membrane function. In: Membrane Fluidity in Biology: Disease Processes, (eds.), R.C. Aloia and J.M. Boggs, Academic Press, Inc., Orlando, Florida, volume 3, pp. 258–281.Google Scholar
  15. Harris, R.A. and Hitzemann, R.J. (1980) Membrane fluidity and alcohol actions. In: Currents in Alcoholism, (ed.), M. Galanther, Grune and Stratton, New York, pp. 379–404.Google Scholar
  16. Harris, R.A. and Schroeder, F. (1981) Ethanol and physical properties of brain membranes: Fluorescence studies. Mol. Pharmacol. 20, 128–137.PubMedGoogle Scholar
  17. Heron, D.S., Shinitzky, M., Hershkowitz, M., and Samuel, D. (1980) Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc. Natl. Acad. Sci. USA 77, 7463–7467.PubMedCrossRefGoogle Scholar
  18. Hery, F., Bourgoin, S., Hamon, M., Ternaux, J.P., and Glowinski, J. (1977) Control of the release of newly synthesized 3H-hydroxytryptamine by nicotinic and muscarinic receptors in rat hypothalamic slices. Nauyn-Schmiedeberg’s Arch. Pharmacol. 296, 91–97.CrossRefGoogle Scholar
  19. Hillier, K. and Karim, S.M.M. (1968) Effects of prostaglandins E1, E2, Fla, Fla on isolated human umbilical and placental blood vessels. J. Obstet. Gynaecol. Br. Cmwlth. 75, 667–673.CrossRefGoogle Scholar
  20. Hitzemann, R.J., Harris, R.A., and Loh, H.H. (1984) Synaptic membrane fluidity and function. In: Physiology and Membrane Fluidity, (ed.), M. Shinitzky, CRC Press, Inc., Boca Raton, Florida, volume II, pp. 109–126.Google Scholar
  21. Horst, M. and Sastry, B.V.R. (1985) Interaction of furan analogs of muscarine at endothelial muscarinic receptors of the rat aorta. Fed. Proc. 44, 1112.Google Scholar
  22. Jaiswal, R.K., Landon, E.J., and Sastry, B.V.R. (1983) Methylation of phospholipids in microsomes of the rat aorta. Biochim. Biophys. Acta 735, 367–379.PubMedCrossRefGoogle Scholar
  23. Janis, R.A. and Triggle, D.J. (1983) New developments in Ca+ + channel antagonists. J. Med. Chem. 26, 775–785.PubMedCrossRefGoogle Scholar
  24. Jones, J.B. and Rowsell, A. (1973) Fetal 5-hydroxytryptamine levels in later pregnancy. J. Obstet. Gynecol. 80, 687–689.Google Scholar
  25. Karim, S.M.M. (1967) The identification of prostaglandins in human umbilical cord. Br. J. Pharmacol. Chemother. 29, 230–237.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Landon, E.J., Jaiswal, R.K., Naukam, R.J., and Sastry, B.V.R. (1984) Effects of calcium channel blocking agents on membrane microviscosity and calcium in the liver of the carbon tetrachloride treated rat. Biochem. Pharmacol. 33, 3553–3560.PubMedCrossRefGoogle Scholar
  27. Mukherjee, A.B. and Hodgen, G.D. (1982) Maternal ethanol exposure induces transient impairment of umbilical circulation and fetal hypoxia in monkeys. Sci. 218, 700–702.CrossRefGoogle Scholar
  28. Netter, F.H. (1967) Pregnancy and its diseases. In: The Ciba Collection of Medical Illustrations: Reproductive System, (ed.), E. Oppenheimer, Ciba Medical Education Division, Summit, NJ, volume 2, p. 219.Google Scholar
  29. Park, M.K., Rishor, C., and Dyer, D.C. (1972) Vasoactive action of prostaglandins and serotonin on isolated human umbilical arteries and veins. Can. J. Physiol. Pharmacol. 50, 393–399.PubMedCrossRefGoogle Scholar
  30. Richards, C.D., Martin, K., Gregory, S., Keightley, C.A., Hesketh, T.R., Smith, G.A., Warren, G.B., and Metcalfe, J.C. (1978) Degenerate perturbations of protein structure as the mechanism of anesthetic action. Nature (London) 276, 775–776.CrossRefGoogle Scholar
  31. Robinson, C.P. and Sastry, B.V.R. (1976) The influence of mecamylamine on contractions induced by different agonists and on the role of calcium ions in the isolated rabbit aorta. J. Pharmacol. Exp. Ther. 197, 57–65.PubMedGoogle Scholar
  32. Robson, J.M. and Sullivan, M. (1968) Effect of 5-hydroxytryptamine on maintenance of pregnancy, congenital abnormalities, and the development of toxemia. Adv. Pharmacol. 6, 187–189.PubMedCrossRefGoogle Scholar
  33. Sastry, B.V.R. and Owens, L.K. (1983) Regional sensitivity of human umbilicoplacental vasculature of 5-hydroxytryptamine and alcohol. Pharmacologist 25, 139.Google Scholar
  34. Sastry, B.V.R. and Owens, L.K. (1984) Differential effects of nicotine and ethyl alcohol on the contractile responses of umbilical and chorionic arteries of human placenta. Fed. Proc. 43, 350.Google Scholar
  35. Sastry, B.V.R. and Sadavongvivad, C. (1979) Cholinergie systems in non-nervous tissues. Pharmacol. Rev. 30, 65–132.Google Scholar
  36. Somlyo, A.V., Woo, C.Y., and Somlyo, A.P. (1965) Responses of nerve free vessels to vasoactive amines and polypeptides. Am. J. Physiol. 208, 748–753.PubMedGoogle Scholar
  37. Thorpe, W.R. and Seeman, R. (1972) On the mechanism of the nicotine-induced contracture of skeletal muscle. Can. J. Physiol. Pharmacol. 50, 920–923.PubMedCrossRefGoogle Scholar
  38. Tulenko, T.N. (1979) Regional sensitivity to vasoactive polypeptides in the human umbilicoplacental vasculature. Am. J. Obstet. Gynecol. 135, 629–636.PubMedGoogle Scholar
  39. Van der Kloot, W. (1978) Calcium and neuromuscular transmission. In: Calcium and Drug Action, (ed.), G.B. Weiss, Plenum Press, New York, London, pp. 261–288.Google Scholar
  40. von Euler, U.S. (1938) Action of adrenaline, acetylcholine and other substances on nerve-free vessels (human placenta). J. Physiol. (London) 93, 129–143.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • B. V. Rama Sastry
    • 1
  • L. K. Owens
    • 1
  1. 1.Department of PharmacologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations