Review of the History of Atmospheric CO2 Recorded in Ice Cores

  • Hans Oeschger
  • B. Stauffer

Abstract

Since the pioneering attempts by Scholander et al. (1961), the observation that the porous spaces in natural ice contain samples of ancient air, the study of ice cores for potential insights into the history of the atmospheric CO2 concentration has received great attention from scientists interested in the reconstruction of environmental parameters. Progress, however, was made possible only because deep ice cores from Greenland and Antarctica, which are continuous sequences of generally high-quality samples formed during the last 100,000 and 50,000 years, respectively, were available for study. Research has led to new techniques for extracting gases from ice and to recent developments of sensitive and accurate techniques for the analysis of gas. Today, analysis of gas concentrations in air entrapped in natural ice is considered to be the most promising method for reconstructing the history of the atmospheric CO2 concentration (WMO 1983).

Keywords

Tree Ring Camp Century Wisconsin Glaciation Byrd Station 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andree, M. and twelve others, 1985. Accelerator radiocarbon ages on foraminifera separated from deep-sea sediments. In: The Carbon Cycle and Atmospheric CO,: National Variations Archean to Present, pp. 143–153. American Geophysical Union, Washington, D.C.Google Scholar
  2. Barnola, J. M., D. Raynaud, A. Neftel, and H. Oeschger. 1983. Comparison of CO2 measurements by two laboratories on air from bubbles in polar ice. Nature 302: 410–413.CrossRefGoogle Scholar
  3. Beer, J., H. Oeschger, M. Andree, G. Bonani, M. Suter, W. Wölfli, and C. C. Langway. 1984. Temporal variations in the ‘Be concentration levels found in the Dye 3 ice core, Greenland. Ann. Glaciol. 5: 16–17.Google Scholar
  4. Beer, J., U. Siegenthaler, H. Oeschger, M. Andree, G. Bonani, M. Suter, W. Wölfli, R. C. Finkel, and C. C. Langway. 1983. Temporal ’°Be variations. Cosmic Ray Conference, Bangalore, August 1983.Google Scholar
  5. Berner, W., H. Oeschger, and B. Stauffer. 1980. Information on the CO, cycle from ice core studies. Radiocarbon 22: 227–235.Google Scholar
  6. Broecker, W. S. 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46: 1689–1705.Google Scholar
  7. Broecker, W. S. 1983. The ocean. Sci. Am. September 1983, pp. 100–112.Google Scholar
  8. Dansgaard, W., H. B. Clausen, N. Gundestrup, C. U. Hammer, S. J. Johnsen, P. M. Kristindottir, and N. Reeh. 1982. A new Greenland deep ice core. Science 218: 1273–1277.CrossRefGoogle Scholar
  9. Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. Gundestrup, C. U. Hammer, and H. Oeschger. 1983. North Atlantic climatic oscillations revealed in deep Greenland ice cores. In J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity, pp. 288–298. American Geophysical Union, Washington, D.C.Google Scholar
  10. Delmas, R. J., J. M. Ascencio, and M. Legrand. 1980. Polar ice evidence that atmospheric CO, 20,000 y BP was 50% of present. Nature 284: 155–157.CrossRefGoogle Scholar
  11. Finkel, R. C. and C. C. Langway, Jr. 1985. Global and local influences on the chemical composition of snowfall at Dye 3 Greenland: the record between 10 KaBP and 40 KaBP. Earth Planetary Sci. Lett. 73: 196–206.CrossRefGoogle Scholar
  12. Freyer, H. D. 1979. On the 13C record in tree rings. Part I. Tellus 31: 124–137.CrossRefGoogle Scholar
  13. Herron, M. M. and C. C. Langway, Jr. 1985. Chloride, nitrate and sulfate in the Dye 3 and Camp Century, Greenland ice cores. In C. C. Langway et. al. (eds.), Greenland Ice Core: Geophysics, Geochemistry and the Environment, pp. 7784. American Geophysical Union, Washington, D.C.Google Scholar
  14. Miller, S. L. 1969. Clathrate hydrates of air in antarctic ice. Science 165: 489–490.CrossRefGoogle Scholar
  15. Moor, E. and B. Stauffer. 1984. A new dry extraction system for gases in ice. J. Glaciol. 30 (106): 358–361.Google Scholar
  16. Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn. 1982. Ice core sample measurements give atmospheric CO, content during the past 40,000 y. Nature 295: 220–223.CrossRefGoogle Scholar
  17. Neftel, A., H. Oeschger, J. Schwander, and B. Stauffer. 1983. CO, concentration in bubbles of natural cold ice. J. Phys. Chem. 87: 4116–4120.CrossRefGoogle Scholar
  18. Oeschger, H., J. Beer, U. Siegenthaler, B. Stauffer, W. Dansgaard, and C. C. Langway. 1983. Late-glacial climate history from ice cores. In J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity, pp. 299–306. American Geophysical Union, Washington, D.C.Google Scholar
  19. Raynaud, D. and R. Delmas. 1977. Composition des gaz contenu dans la glace polaire. IAHS-Publication 118, pp. 377–381.Google Scholar
  20. Raynaud, D. and B. Lebel. 1979. Total gas content and surface elevation of polar ice sheets. Nature 281: 289–291.CrossRefGoogle Scholar
  21. Raynaud D. and T. M. Barnola, 1985. An Antarctic ice core reveals atmospheric CO, variations over the past few centuries. Nature 315: 309–311.CrossRefGoogle Scholar
  22. Scholander, P. F., E. A. Hemmingsen, L. K. Coachman, and D. C. Nutt, 1961. Composition of gas bubbles in Greenland icebergs. J. Glaciol. 3: 813–822.Google Scholar
  23. Schwander, J. and B. Stauffer. 1984. Age difference between polar ice and the air trapped in its bubbles. Nature 311: 45–47.CrossRefGoogle Scholar
  24. Shackleton, N. J., M. A. Hall, T. Line, and Cang Shuxi. 1983. Carbon isotope data in core V 19–30 confirms reduced carbon dioxide content in ice age atmosphere. Nature 306: 319–322.CrossRefGoogle Scholar
  25. Siegenthaler, U., M. Heimann, and H. Oeschger. 1980. “C Variations caused by changes in the global carbon cycle. Radiocarbon 22: 177–191.Google Scholar
  26. Siegenthaler, U. and H. Oeschger. 1984. Transient temperature changes due to increasing CO, using simple model. Ann. Glaciol. 5: 153–159.Google Scholar
  27. Stauffer, B. 1981. Mechanismen des Lufteinschlusses in natürlichem Eis. Z. Gletscherkd. Glazialgeol. 17: 17–56.Google Scholar
  28. Stauffer, B., W. Berner, H. Oeschger, and J. Schwander. 1981. Atmospheric CO2 history from ice core studies. J. Gletscherkd. Glazialgeol. 17: 1–16.Google Scholar
  29. Stauffer, B., H. Hofer, H. Oeschger, J. Schwander, and U. Siegenthaler. 1983. Atmospheric CO2 concentration during the last glaciation. Ann. Glaciol. 5: 160–164.Google Scholar
  30. Stauffer, B., A. Neftel, H. Oeschger, and J. Schwander. 1985. CO2 concentration in air extracted from Greenland ice samples. In C. C. Langway et. al. (eds.), Greenland Ice Core: Geophysics, geochemistry and the environment, pp. 85–89. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  31. Stuiver, M., R. L. Burk, and P. D. Quay. 1983. “C1’2C ratios and the transfer of biospheric carbon to the atmosphere. J. Geophys. Res. (submitted).Google Scholar
  32. Stuiver, M. and P. D. Quay. 1980. Changes in atmospheric carbon-14 attributed to a variable sun. Science 207: 11–19.CrossRefGoogle Scholar
  33. Suess, H. E. 1968. Climatic change, solar activity and the cosmic-ray production rate of the natural radiocarbon. Meteorol. Monogr. 8: 146–150.Google Scholar
  34. Suess, H. E. 1980. The radiocarbon record in tree rings of the last 8000 years. Radiocarbon 22: 200–209.Google Scholar
  35. Ueda, H. T. and D. E. Garfield. 1968. Drilling through the Greenland ice sheet. U.S. Army CRREL Special Report 126.Google Scholar
  36. Ueda, H. T. and D. E. Garfield. 1969. Core drilling through the Antarctic ice sheet. U.S. Army CRREL Technical Report 231.Google Scholar
  37. WMO. 1983. Report of the WMO (CAS) meeting of experts on the CO2 concentration from preindustrial times to IGY WMO Project on Research and Monitoring of Atmospheric CO2, Report 10, WCP-53.Google Scholar
  38. Zumbrunn, R., A. Neftel, and H. Oeschger. 1982. CO2 measurements on 1-cm3 ice samples with an IR laser spectrometer (IRLS) combined with a new dry extraction device. Earth Planet. Sci. Lett. 60: 318–324.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Hans Oeschger
  • B. Stauffer

There are no affiliations available

Personalised recommendations