Atmospheric CO2 Projections with Globally Averaged Carbon Cycle Models

  • John R. Trabalka
  • James A. Edmonds
  • John M. Reilly
  • Robert H. Gardner
  • David E. Reichle

Abstract

The principal objective of this analysis is to attempt to project the level of CO2 in the atmosphere over the next century (to the year 2075). Knowledge of future atmospheric CO2 concentrations is necessary to establish whether there are likely to be significant climatic and biological consequences resulting from continued fossil fuel combustion. To estimate the effects of projected fossil fuel emissions on future atmospheric CO2 levels, it is necessary to know how this anthropogenic source impacts the natural biogeochemical cycle of carbon—a complex and dynamic set of processes linking the atmosphere, the oceans, and the terrestrial environment. Because of the complicated and changing nature of the anthropogenic source terms and the carbon cycle, simulation models that deal with relationships between economic patterns, energy use, and CO2 emissions and with the major components of the global biogeochemical cycle are needed. These models appear to offer the only practical means to integrate the vast array of detailed quantitative data needed to provide projections of future atmospheric change. Such modeling efforts should be internally consistent with the natural carbon fluxes among atmospheric, oceanic, and terrestrial pools; they should accurately reflect the impact of fossil and biospheric releases over past centuries; and, of course, they should satisfactorily account for empirical measurements of recent decades (e.g., 316 ppmv in 1959 rising to 345 ppmv at present).

Keywords

Fossil Fuel Carbon Emission Carbon Cycle Global Carbon Cycle Gross National Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, W. 1983. Carbon dioxide/climate threat: fate or forbearance? In W. Bach et al. (eds.), Carbon Dioxide: Current Views Developments in Energy/Climate Research, pp. 461–509. D. Reidel, Dordrecht.Google Scholar
  2. Björkström, A. 1979. A model of CO, interaction between atmosphere, oceans, and land biota. In B. Bolin, E. T. Degens, S. Kempe, and P. Ketner (eds.), The Global Carbon Cycle, Scope 13, pp. 403–457. John Wiley & Sons, New York.Google Scholar
  3. Edmonds, J. A. and J. Reilly. 1983a. A long-term global energy-economic model of carbon dioxide release from fossil fuel use. Energy Econ. 5 (2): 74–88.CrossRefGoogle Scholar
  4. Edmonds, J. A. and J. Reilly. 1983b. Global energy production and use to the year 2050. Energy 8: 419–432.CrossRefGoogle Scholar
  5. Edmonds, J. A. and J. Reilly. 1983c. Global energy and CO, to the year 2050. Energy J. 4 (3): 21–47.Google Scholar
  6. Edmonds, J. A. and J. Reilly. 1985. Global Energy: Assessing the Future. Oxford University Press, New York.Google Scholar
  7. Edmonds, J. A., J. Reilly, J. R. Trabalka, and D. E. Reichle. 1984. An Analysis of Possible Future Atmospheric Retention of Fossil Fuel CO2, DOE TR-013. U. S. Department of Energy Technical Report Series. National Technical Information Services, Springfield, Virginia.Google Scholar
  8. Emanuel, W. R., G. G. Killough, W. P. Post, and H. H. Shugart. 1984a. Modeling terrestrial ecosystems in the global carbon cycle with shifts in storage capacity by land-use change. Ecology 65: 970–983.CrossRefGoogle Scholar
  9. Emanuel, W. R., G. G. Killough, M. P. Stevenson, W. M. Post, and H. H. Shugart. 1984b. Computer implementation of a globally averaged model of the world carbon cycle, DOE TR-010. U.S. Department of Energy Technical Report Series. National Technical Information Services, Springfield, Virginia.Google Scholar
  10. Gardner, R. H. (1985) Error analysis and sensitivity analysis in ecology. In Macan Singh (ed.) Encyclopedia of Systems and Control. Pergamon Press, London.Google Scholar
  11. Gardner, R. H., B. Rojder, and U. Bergstrom. 1983. PRISM: A systematic method for determining the effect of parameter uncertainties on model predictions, AB Report/NW-83/555. Studsvik Energiteknik, Nykoping, Sweden.Google Scholar
  12. Gardner, R. H., J. R. Trabalka, and W. R. Emanuel. (1985) Methods of uncertainty analysis for a global carbon dioxide model, DOE TR-024. U. S. Department of Energy Technical Report Series. National Technical Information Services, Springfield, Virginia.Google Scholar
  13. Häfele, W. 1981. Energy In a Finite World. Ballinger, Cambridge, Massachusetts.Google Scholar
  14. Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53: 235–262.Google Scholar
  15. JASON. 1979. The Long-Term Impact of Atmospheric Carbon Dioxide on Climate. Technical Report JSR-78–07. SRI International, Arlington, Virginia.Google Scholar
  16. Keeling, C. D. 1973. Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25: 174–198.CrossRefGoogle Scholar
  17. Keeling, C. D. and R. B. Bacastow. 1977. Impact of industrial gases on climate. In Energy and Climate, pp. 72–95. National Academy of Sciences, Washington, D. C.Google Scholar
  18. Keeling, C. D., R. B. Bacastow, and T. P. Whorf. 1982. Measurements of the concentration of carbon dioxide at Mauna Loa Observatory, Hawaii. In W. C. Clark (ed.), Carbon Dioxide Review: 1982, pp. 377–385. Oxford University Press, New York.Google Scholar
  19. Laurmann, J. A. 1983. Strategic issues and the CO, environmental problem. In W. Bach et al. (eds.), Carbon Dioxide: Current Views and Developments in Energy/Climate Research, pp. 415–460. D. Reidel, Dordrecht.Google Scholar
  20. Laurmann, J. A. and R. M. Rotty. 1983. Exponential growth and atmospheric carbon dioxide. J. Geophys. Res. 88: 1295–1299.Google Scholar
  21. Laurmann, J. A. and J. R. Spreiter. 1983. The effects of carbon cycle model error in calculating future atmospheric carbon dioxide levels. Clim. Change 5: 145181.Google Scholar
  22. Lovins, A. B., L. H. Lovins, F. Krause, and W. Bach. 1981. Energy Strategies for Low Climate Risks. Prepared for the German Federal Environmental Agency, San Francisco International Project for Soft-Energy Paths, San Francisco, California.Google Scholar
  23. Machta, L. 1983. The atmosphere. In Changing Climate, pp. 242–251. National Academy Press, Washington, D.C.Google Scholar
  24. Markley, O. W. and T. J. Hurley III. 1983. A brief technology assessment of the carbon dioxide effect. Technol. Forecast. Soc. Change 23: 185–202.Google Scholar
  25. Marland, G. and R. M. Rotty. 1983. Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–1981, DOE TR-0003, U. S. De-partment of Energy Technical Report Series. National Technical Information Services, Springfield, Virginia.Google Scholar
  26. Niehaus, F. and J. Williams. 1979. Studies of different energy strategies in terms of their effects on the atmospheric CO2 concentration. J. Geophys. Res. 84 (c6): 3123–3129.CrossRefGoogle Scholar
  27. Nordhaus, W. D. 1979. The Efficient Use of Energy Resources. Yale University Press, New Haven, Connecticut.Google Scholar
  28. Nordhaus, W. D. and G. Yohe. 1983. Future carbon dioxide emissions from fossil fuels. In Changing Climate, pp. 87–153. National Academy Press, Washington, D.C.Google Scholar
  29. Oeschger, H. and M. Heimann. 1983. Uncertainties of predictions of future atmospheric CO2 concentrations. J. Geophys. Res. 88: 1258–1262.Google Scholar
  30. Olson, J.S., J. A. Watts, and L. J. Allison. 1983. Carbon in Live Vegetation of Major World Ecosystems, ORNL-5862. Oak Ridge National Laboratory, Oak Ridge, Tennessee.Google Scholar
  31. Pearman, G. I. 1980. The global carbon cycle and increasing levels of atmospheric carbon dioxide. In Carbon Dioxide and Climate: Australian Research, pp. 1120. Australian Academy of Sciences, Canberra, Australia.Google Scholar
  32. Peng, T.-H., W. S. Broecker, H. D. Freyer, and S. Trumbore. 1983. A decon- volution of the tree-ring-based 13C record. J. Geophys. Res. 88: 3609–3620.Google Scholar
  33. Perry, A. M. 1984. Atmospheric retention of anthropogenic CO2: Scenario dependence of the airborne fraction. EPRI EA-3466. Oak Ridge National Laboratory, Oak Ridge.Google Scholar
  34. Perry, A. M., K. J. Araj, W. Fulkerson, D. J. Rose, M. M. Miller, and R. M. Rotty. 1982. Energy supply and demand implications of CO2. Energy 7: 9911004.Google Scholar
  35. Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberger. 1982. Soil carbon pools and world life zones. Nature 298: 156–159.CrossRefGoogle Scholar
  36. Reister, D. B. and R. M. Rotty. 1983. Scenario analysis of future global fossil fuel consumption. Energy 8 (4): 283–289.CrossRefGoogle Scholar
  37. Revelle, R. and W. Munk. 1977. The carbon dioxide cycle and the biosphere. In Energy and Climate, pp. 140–158. National Academy of Sciences, Washington, D.C.Google Scholar
  38. Rose, D., M. Miller, and C. Agnew. 1983. Global Energy Futures and CO3-Induced Climate Change, MITEL 83–015, MIT Energy Laboratory. Massachusetts Insitute of Technology, Cambridge, Massachusetts.Google Scholar
  39. Rotty, R. M. and G. Marland. 1980. Constraints on Carbon Dioxide Production From Fossil Fuel Use. ORAU/IEA-80–9(m). Institute for Energy Analysis, Oak Ridge, Tennessee.Google Scholar
  40. Seidel, S. and D. Keyes. 1983. Can We Delay a Greenhouse Warming? U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  41. Siegenthaler, U. and H. Oeschger. 1978. Predicting future atmospheric carbon dioxide levels. Science 199: 388–395.CrossRefGoogle Scholar
  42. Stuiver, M., R. L. Burk, and P. D. Quay. 1984. 13C/12C Ratios and the transfer of biospheric carbon to the atmosphere. J. Geophys. Res. 89: 1173111748.Google Scholar
  43. Woodwell, G. M., J. E. Hobbie, R. A. Houghton, J. M. Melillo, B. J. Peterson, G. R. Shaver, and T. A. Stone. 1983a. Deforestation Measured by LANDSAT: Steps Toward a Method, DOE TR-005. U. S. Department of Energy, Technical Report Series. National Technical Information Services, Springfield, Virginia.Google Scholar
  44. Woodwell, G. M., J. E. Hobbie, R. A. Houghton, J. M. Melillo, B. Moore, B. J. Peterson, and G. R. Shaver. 1983b. Global deforestation: contribution to atmospheric carbon dioxide. Science 222: 1082–1086.Google Scholar
  45. Wuebbles, D. J., M. C. MacCracken, and F. M. Luther. 1984. A Proposed Reference Set of Scenarios for Radiatively Active Atmospheric Constituents, TR-015. U. S. Department of Energy Technical Report Series. National Technical Information Services, Springfield, Virginia.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • John R. Trabalka
  • James A. Edmonds
  • John M. Reilly
  • Robert H. Gardner
  • David E. Reichle

There are no affiliations available

Personalised recommendations