Three-Dimensional Ocean Models for Predicting the Distribution of CO2 Between the Ocean and Atmosphere

  • Jorge L. Sarmiento

Abstract

The basic ingredients necessary to predict fossil fuel CO2 uptake with a three-dimensional model of the oceans are threefold.

Keywords

Wind Stress Vertical Advection North Equatorial Current American Meteorological Society Provide Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broecker, W. S. 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46: 1689–1705.CrossRefGoogle Scholar
  2. Broecker, W. S. and T. -H. Peng, 1982. Tracers in the Sea. Eldigio Press, Palisades, New York.Google Scholar
  3. Broecker, W. S., T. -H. Peng, and R. Engh. 1980. Modeling the carbon system. Radiocarbon 22: 565–598.Google Scholar
  4. Bryan, K. 1969. A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4: 347–376.Google Scholar
  5. Bryan, K. and L. J. Lewis. 1979. A water mass model of the world ocean. J. Geophys. Res. 84: 2503–2517.CrossRefGoogle Scholar
  6. Hasselmann, K. 1982. An ocean model of climate variability studies. Prog. Oceanogr. 11: 69–92.CrossRefGoogle Scholar
  7. Hellerman, S. 1967. An updated estimate of the wind stress on the world ocean. Mon. Weather Rev. 95:607–626CrossRefGoogle Scholar
  8. Hellerman, S. and M. Rosenstein. 1983. Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr. 13: 1093–1104.CrossRefGoogle Scholar
  9. Holland, W. R. 1978. The role of mesoscale eddies in the general circulation of the ocean—numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr. 8: 363–392.CrossRefGoogle Scholar
  10. Keir, R. S. and W. H. Berger. 1983. Atmospheric CO2 content in the last 120,000 years: the phosphate extraction model. J. Geophys. Res. 88: 6027–6038.CrossRefGoogle Scholar
  11. Knox, F. and M. B. McElroy. 1984. Changes in atmospheric CO,: influence of the marine biota at high latitude. J. Geophys. Res. 89: 4629–4637.CrossRefGoogle Scholar
  12. Kromer, B. 1979. Gasaustausch zwischen Atmosphäre and Ozean—Feldmessungen mittels der Radonmethode. Inaugural dissertation, Ruprecht, Karl Universität, Heidelberg, West Germany.Google Scholar
  13. Leetmaa, A. and A. F. Bunker. 1978. Updated charts of the mean annual wind stress, convergences in the Ekman layers and Sverdrup transports in the North Atlantic. J. Mar. Res. 36: 311–322.Google Scholar
  14. Levitus, S. 1982. Climatological Atlas of the World Ocean. National Oceanic and Atmospheric Administration Professional Paper No. 13.Google Scholar
  15. McElroy, M. B. 1982. Marine biology: controls on atmospheric CO2 and climate. Nature 302: 328–329.CrossRefGoogle Scholar
  16. Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelman. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 2: 168–192.Google Scholar
  17. Ostlund, H. G., H. G. Dorsey, and R. Brescher. 1976. GEOSECS Atlantic radiocarbon and tritium results. Data Rep. No. 5. Rosentiel School of Marine and Atmospheric Science, University of Miami, Florida.Google Scholar
  18. Ostlund, H. G., H. G. Dorsey, R. Brescher, and W. H. Peterson. 1977. Oceanic tritium profiles, NAGS cruises 1972–73.Google Scholar
  19. Data Rep. No. 6. Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Florida.Google Scholar
  20. Peng, T. -H., W. S. Broecker, G. G. Mathieu, Y. -H. Li, and A. E. Bainbridge. 1979. Radon evasion rates in the Atlantic and Pacific Oceans as determined during the GEOSECS program. J. Geophys. Res. 84: 2471–2486.CrossRefGoogle Scholar
  21. Sarmiento, J. L. 1983a. A tritium box model of the North Atlantic thermocline. J. Phys. Oceanogr. 13: 1269–1274.CrossRefGoogle Scholar
  22. Sarmiento, J. L. 1983b. A simulation of bomb tritium entry into the North Atlantic Ocean. J. Phys. Oceanogr. 13: 1924–1939.CrossRefGoogle Scholar
  23. Sarmiento, J. L. and K. Bryan. 1982. An ocean transport model for the North Atlantic. J. Geophys. Res. 87: 394–408.Google Scholar
  24. Sarmiento, J. L., C. G. H. Rooth, and W. Roether. 1982. The North Atlantic tritium distribution in 1972. J. Geophys. Res. 87: 8047–8056.Google Scholar
  25. Sarmiento, J. L. and J. R. Toggweiler. 1984. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308: 621–624.CrossRefGoogle Scholar
  26. Siegenthaler, U. 1983. Uptake of excess CO2 by an outcrop-diffusion model of the ocean. J. Geophys. Res. 88: 3599–3608.Google Scholar
  27. Siegenthaler, U. and T. Wenk. 1984. Rapid atmospheric CO, variations and ocean circulation. Nature 308: 624–626.CrossRefGoogle Scholar
  28. Stauffer, B., H. Hofer, H. Oeschger, J. Schwander, and U. Siegenthaler. 1984. Ann. of Glaciol. 5: 160–164.Google Scholar
  29. Weiss, W., W. Roether, and E. Dreisigacker. 1979. Tritium in the North Atlantic Ocean. Behavior of Tritium in the Environment, pp. 315–336. International Atomic Energy Agency (IAEA), Vienna.Google Scholar
  30. Wunsch, C. 1978. The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys. Space Phys. 16: 583–620.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Jorge L. Sarmiento

There are no affiliations available

Personalised recommendations