Attempts to Obtain Separations of Chiral Anticholinergic Drugs

  • Karla G. Feitsma
  • Ben F. H. Drenth
  • Kor H. Kooi
  • Jan Bosman
  • Rokus A. de Zeeuw
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 16 A)

Abstract

Where a drug has enantiomeric forms, each should be measurable in the same sample, as now investigated with oxyphenonium and some quaternary atropine analogues. Resolution was attempted with a chiral-HPLC system, containing d-camphorsulphonic acid as a mobile phase component or (cf. W.U. Pirkle’s work) with chiral stationary phases. Neither approach was successful, due to the relatively long distance between the chiral centre and the quaternized nitrogen.

We therefore tried to resolve the optical antipodes of the acid parts of the cholinergics (easily obtained by hydrolysis). An HPLC system having β-eyclodextrin as the chiral stationary phase was chosen. Using aqueous mobile phases, cyclohexylphenylglycollic acid (the acid moiety in oxyphenonium), cyclohexylphenylacetic acid and mandelic acid (e.g. in homatropine) were resolved. However, tropic acid could not be separated into enantiomers with this system. Consideration is given to the influence of temperature and sample concentration on selectivity and resolution and to difficulties in quantitative analysis.

Keywords

Chiral Centre Chiral Stationary Phase Mandelic Acid Chiral HPLC Racemic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cushny, A.R. (1904) J. Physiol.30, 176–194.Google Scholar
  2. 2.
    Ellenbroek, B.W.J., Nivard, R.J.F., van Rossum, J.M. & Ariens, E.J. (1965) J. Pharm. Pharmacol.17, 393–404.CrossRefGoogle Scholar
  3. 3.
    Barlow, R.B., Franks, F.M. & Pearson, J.D.M. (1973) J. Med. Chem.16, 439–446.CrossRefGoogle Scholar
  4. 4.
    Ensing, K. (1984) Thesis, State University, Groningen.Google Scholar
  5. 5.
    Fujimura, K., Ueda, T. & Ando, T. (1983) Anal. Chem.55, 446–450.CrossRefGoogle Scholar
  6. 6.
    Kuwata, K., Uebori, M. & Yamazaki, Y. (1981) J. Chromatog.211, 378–382.CrossRefGoogle Scholar
  7. 7.
    Petterson, C. & Schill, G. (1981) J. Chromatog.204, 179–183.CrossRefGoogle Scholar
  8. 8.
    Pirkle, W.H., Finn, J.M., Schreiner, J.L. & Hamper, B.C. (1981) J. Am. Chem. Soc.103, 3964–3966.CrossRefGoogle Scholar
  9. 9.
    Pirkle, W.H. & Welch, C.J. (1984) J. Org. Chem.49, 138–140.CrossRefGoogle Scholar
  10. 10.
    Cramer, F. & Dietsche, W. (1959) Chem. Ber.92, 378–384.CrossRefGoogle Scholar
  11. 11.
    Debowski, J., Sybilska, D. & Jurczak, J. (1982) Chromatographia16, 198–200.CrossRefGoogle Scholar
  12. 12.
    Nobuhara, Y., Hirano, S. & Nakanishi, Y. (1983) J. Chromatog.258, 276–279.CrossRefGoogle Scholar
  13. 13.
    Feitsma, K.G., Drenth, B.F.H. & de Zeeuw, R.A. (1984) J. High Résolu. Chromatog. Chromatog. Comrn.7, 147–148.CrossRefGoogle Scholar
  14. 14.
    Hinze, W.L., Riehl, T.E., Armstrong, D.W., DeMond, W., Alak, A. & Ward, T. (1985) Anal. Chem.57, 237–242.CrossRefGoogle Scholar
  15. 15.
    Dalgliesh, C.E. (1952) J. Chem. Soc. 3940–3942.Google Scholar
  16. 16.
    Tanaka, M., Kawaguchi, Y., Nakae, M., Mizobuchi, Y. & Shono, T. (1984) J. Chromatog.299, 341–350.CrossRefGoogle Scholar
  17. 17.
    Neider, J.A. & Mead, R.A. (1965) Comput. J.7, 308–313.CrossRefGoogle Scholar
  18. 18.
    Hinze, W.L. (1981) Separ. Purif. Meths.10, 159–237.CrossRefGoogle Scholar
  19. 19.
    Horváth, C. & Melander, W.R. (1983) in Chromatography, Fundamentals and Techniques, J. Chromatog. Libr. 22A (Heftmann, E., ed.), Elsevier, Amsterdam, pp. A27–A135: see p. A54.Google Scholar
  20. 20.
    as for 19.: see p. A52.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Karla G. Feitsma
    • 1
  • Ben F. H. Drenth
    • 1
  • Kor H. Kooi
    • 1
  • Jan Bosman
    • 1
  • Rokus A. de Zeeuw
    • 1
  1. 1.Department of Analytical Chemistry and ToxicologyState UniversityGroningenThe Netherlands

Personalised recommendations