Determination of Benzodiazepines: The Present-Day Scene

  • M. Danhof
  • J. Dingemanse
  • D. D. Breimer
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 16 A)

Abstract

Methods that have been used for determining benzodiazepines in biological fluids include GC, HPLC, direct DPP, RIA and RRA methods*, of which GC, HPLC and RRA have proved the most valuable in clinical research on benzodiazepines. For low concentrations GC is particularly suitable, with ECB and possibly a SCOT column and a solids injector. Some hydroxylated benzodiazepines have to be derivatized. For thermally unstable compounds such as these, HPLC-UV is advantageous, although less sensitive than GC-ECD. HPLC with fluorescence detection is feasible but requires derivatization. HPLC with EC detection has so far been unpromising. HPLC could be useful for drug enantiomers.

RRA’s can detect both parent drug and pharmacologically active metabolites, preferably with assay on the sample direct. Especial attention is needed to receptor quality (brain-membrane preparation).

Keywords

Methyl Iodide Total Binding Ball Valve RADIORECEPTOR Assay Drug Enantiomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Silva, J.A.F. (1982) in Pharmacology of Benzodiazepines (Usdin, E., Skolnick, P., Tallmann, J.F., Greenblatt, D. & Paul, S.M., eds.), Macmillan, London, pp. 239–256.Google Scholar
  2. 2.
    de Silva, J.A.F. & Bekersky, I.(1974) J. Chromatog.99, 447–460 [see also 461–483].CrossRefGoogle Scholar
  3. 3.
    De Boer, A.G., Röst-Kaiser, J., Bracht, H. & Breimer, D.D. (1978) J. Chromatog.145, 105–114.Google Scholar
  4. 4.
    Jochemsen, R. & Breimer, D.D. (1982) J. Chromatog.227, 199–206.Google Scholar
  5. 5.
    Jochemsen, R., Van Rijn, P.A., Hazelzet, T.G.M. & Breimer, D.D. (1983) Pharm. Weekbl. Sci.5, 308–312.CrossRefGoogle Scholar
  6. 6.
    Driessen, O. & Emonds, A. (1974) Proc. Ron. Ned. Acad. Wetensch., Ser. C, 77, 171–181.Google Scholar
  7. 7.
    Van den Berg, P.M.J. & Cox, T.P.H. (1972) Chromatographia5, 301–305.CrossRefGoogle Scholar
  8. 8.
    De Boer, A.G. (1979) Ph.D. Thesis, Leiden, pp. 21–38.Google Scholar
  9. 9.
    Baktir, G. & Bircher, J. (1985) J. Chromatog.339, 192–197.Google Scholar
  10. 10.
    de Silva, J.A.F. (1978) in Antileptic Drugs: Quantitative Analysis and Interpretation (Pippenger, C.E., Penry, J.K. & Kutt, H., eds.), Raven Press, New York, pp. 111–138.Google Scholar
  11. 11.
    Kangas, L. (1977) J. Chromatog.136, 259–270.CrossRefGoogle Scholar
  12. 12.
    de Silva, J.A.F., Bekersky, I., Puglisi, C.V., Brody, M.A. & Weinfeld, R.E. (1976) Anal. Chem.48, 10–19.CrossRefGoogle Scholar
  13. 13.
    Horning, E.C., Carroll, D.I., Dzidic, I., Lin, S-N., Stilwell, R.N. & Thenot, J.P. (1977) J. Chromatog.142, 481–495.CrossRefGoogle Scholar
  14. 14.
    Garland, W.A. & Miwa, B.J. (1980) Environ. Health Persp.36, 69–76.CrossRefGoogle Scholar
  15. 15.
    Bente, H.B. (1978) as for 10., pp. 139–145.Google Scholar
  16. 16.
    Kangas, L. (1979) J. Chromatog.172, 273–278.CrossRefGoogle Scholar
  17. 17.
    Vasiliades, J. & Owens, C. (1980) J. Chromatog.182, 439–444.Google Scholar
  18. 18.
    Strojny, N., Puglisi, C.V. & de Silva, J.A.F. (1978) Anal. Lett.B11, 135–160.CrossRefGoogle Scholar
  19. 19.
    Tjaden, U.R., Meeles, M.T.H.A., Thijs, C.P. & Van der Kaay, M. (1980) J. Chromatog.181, 227–241.Google Scholar
  20. 20.
    Vree, T.B., Baars, A.M., Hekster, Y.A. & Van der Kleyn, M. (1981) J. Chromatog.224, 519–525.Google Scholar
  21. 21.
    Vasiliades, J. & Sahawnez, T. (1982) J. Chromatog.228, 195–203.Google Scholar
  22. 22.
    Petters, I., Peng, D.R. & Rane, A. (1984) J. Chromatog.306, 241–248.Google Scholar
  23. 23.
    Heizmann, P., Geschke, R. & Zinapold, K. (1984) J. Chromatog.224, 129–137.Google Scholar
  24. 24.
    Kozu, T. (1984) J. Chromatog.310, 213–218.Google Scholar
  25. 25.
    Puglisi, C.V., Ferrara, F.J. & de Silva, J.A.F. (1983) J. Chromatog.275, 319–333.Google Scholar
  26. 26.
    de Silva, J.A.F., Bekersky, I. & Puglisi, C.V. (1974) J. Pharm. Sci.63, 1837–1841.CrossRefGoogle Scholar
  27. 27.
    Sumirtapura, Y.C., Aubert, C., Coassolo, Ph. & Cano, J.P. (1982) J. Chromatog.232, 111–118.Google Scholar
  28. 28.
    Lund, W., Hannisdal, M. & Greibrokk, T. (1979) J. Chromatog.173, 249–261.CrossRefGoogle Scholar
  29. 29.
    Hackmann, M.R. & Brooks, M.A. (1981) J. Chromatog.222, 179–190.Google Scholar
  30. 30.
    Pirkle, W.M. & Tsipouras, A. (1984) J. Chromatog.291, 291–298.CrossRefGoogle Scholar
  31. 31.
    Mascher, M.A., Nitsche, V. & Schütz, H. (1984) J. Chromatog.306, 231–239.Google Scholar
  32. 32.
    Braestrup, C., Albrechtsen, A. & Squires, R.F. (1977) Nature269, 702–704.CrossRefGoogle Scholar
  33. 33.
    Möhler, H. & Okada, T. (1977) Science198, 849–851.CrossRefGoogle Scholar
  34. 34.
    Hunt, P., Husson, J.M. & Raynaud, J.P. (1979) J. Pharm. Pharmacol.31, 448–451.CrossRefGoogle Scholar
  35. 35.
    Skolnick, P., Goodwin, F.K. & Paul, S.M. (1979) Arch. Gen. Psych.36, 78–90.CrossRefGoogle Scholar
  36. 36.
    Lund, J. (1981) Scand. J. Clin. Lab. Invest.41, 275–281.CrossRefGoogle Scholar
  37. 37.
    Dorow, R.G., Seidler, J. & Schneider, H.H. (1982) Br. J. Clin. Pharmacol.13, 561–565.Google Scholar
  38. 38.
    Jochemsen, R., Horbach, G.J.M.J. & Breimer, D.D. (1982) Res. Comm. Chem. Pathol. Pharmacol.35, 259–273.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • M. Danhof
    • 1
  • J. Dingemanse
    • 1
  • D. D. Breimer
    • 1
  1. 1.Center for Bio-Pharmaceutical Sciences, Division of PharmacologyUniversity of LeidenLeidenThe Netherlands

Personalised recommendations