The Pathobiology of the Atherosclerotic Plaque in the Mid-1980s

  • Robert W. Wissler

Abstract

The process of progressive atherogenesis is largely the result of the interaction of lipoproteins with the artery wall cells and their matrix products to produce the advanced plaque. Its main components are the necrotic cholesteryl ester rich core from which the disease process gets part of its name (the Greek stem “athero” means gruel or porridge) and the fibrous (sclerotic) cap which contains predominantly smooth muscle cells which often become encased in their own synthesis products of collagen, elastin and proteoglycans. Typically, many of these cells and their surrounding intercellular matrix show abundant lipids which are demonstrable both chemically and morphologically. These major components are responsible for most of the signs and symptoms and most of the life-threatening effects of atherosclerosis which result in its being the leading cause of death and morbidity in the urban-industrial countries of the world, especially in Europe and North America.

Keywords

Smooth Muscle Cell Cholesteryl Ester Familial Hypercholesterolemia Familial Hypercholesterolemia Atherosclerotic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Wissler, Development of the atherosclerotic plaque, in: Myocardium: Failure and Infarction, E. Braunwald, ed., p. 155, HP Publishing Co., New York (1974).Google Scholar
  2. 2.
    R. W. Wissler, D. Vesselinovitch, and G. S. Getz, Abnormalities of the arterial wall and its metabolism in atherogenesis, Prog. Cardiovasc. Dis. 18: 341 (1976).CrossRefGoogle Scholar
  3. 3.
    R. W. Wissler, The emerging cellular pathobiology of atherosclerosis, Artery 5: 409 (1979).Google Scholar
  4. 4.
    R. Ross, Atherosclerosis: A problem of the biology of arterial wall cells and their interactions with blood components, Arteriosclerosis 1: 293 (1981).CrossRefGoogle Scholar
  5. 5.
    D. Steinberg, Lipoproteins and atherosclerosis: A look back and a look ahead, Arteriosclerosis 3: 283 (1983).CrossRefGoogle Scholar
  6. 6.
    R. Ross and J. A. Glomset, The pathogenesis of atherosclerosis, N. Eng. J. Med. 295: 369, 420 (1976).CrossRefGoogle Scholar
  7. 7.
    R. W. Wissler et al., Conference on the Health Effects of Blood Lipids: Optimal Distributions for Populations. Workshop Report: Laboratory-Experimental Section, Prev. Med. 8: 715 (1979).CrossRefGoogle Scholar
  8. 8.
    V. C. Y. Kao, R. W. Wissler, and K. Dzoga, The influence of hyperlipemic serum on the growth of medial smooth muscle cells of rhesus monkey aorta in vitro, Circulation 38 (Suppl. VI): 12 (1968).Google Scholar
  9. 9.
    K. Fischer-Dzoga and R. W. Wissler, Stimulation of proliferation in stationary primary cultures of monkey aortic smooth muscle cells. II. Effect of varying concentrations of hyperlipemic serum and low density lipoproteins of varying dietary fat origins, Atherosclerosis 24: 515 (1976).CrossRefGoogle Scholar
  10. 10.
    R. W. Wissler, Interactions of low-density lipoproteins from hypercholesterolemic serum with arterial wall cells and their extracellular products in atherogenesis and regression, in: The Biochemistry of Atherosclerosis, A. Scanu, R. W. Wissler and G. S. Getz, eds., p. 345, Marcel Dekker, Inc., New York (1979).Google Scholar
  11. 11.
    Y. Yoshida, K. Fischer-Dzoga, and R. W. Wissler, Effects of normolipemic HDL on proliferation of monkey aortic smooth muscle cells induced by hyperlipemic LDL, Circulation 56 (Suppl. III): 100 (1977).Google Scholar
  12. 12.
    N. E. Miller, Prevention of coronary heart disease: The role of high density lipoproteins, Postgrad. Med. J. 56: 575 (1980).CrossRefGoogle Scholar
  13. 13.
    S. R. Bates, Accumulation and loss of cholesterol esters in monkey arterial smooth muscle cells exposed to normal and hyperlipemic serum lipoproteins, Atherosclerosis 32: 165 (1979).CrossRefGoogle Scholar
  14. 14.
    W. A. Thomas and D. N. Kim, Atherosclerosis as a hyperplastic and/or neoplastic process, Lab. Invest. 48: 245 (1983).Google Scholar
  15. 15.
    G. Assmann, Lipid Metabolism and Atherosclerosis, p. 44, Schattauer Verlag, Stuttgart (1982).Google Scholar
  16. 16.
    R. W. Wissler, Principles of the pathogenesis of atherosclerosis, in: Heart Disease: A Textbook of Cardiovascular Medicine, 2nd Edition. E. Braunwald, ed., W. B. Saunders Co., Philadelphia (in press, 1983).Google Scholar
  17. 17.
    W. C. Roberts, The status of the coronary arteries in fatal ischemic heart disease, Cardiovasc. Clin. 7: 1 (1975).Google Scholar
  18. 18.
    D. B. Zilversmit, Atherogenesis: A postprandial phenomenon, Circulation Res. 33: 633 (1973).CrossRefGoogle Scholar
  19. 19.
    R. W. Mahley, Atherogenic hyperlipoproteinemia. The cellular and molecular biology of plasma lipoproteins altered by dietary fat and cholesterol, Med. Clin. N. Am. 66: 375 (1982).Google Scholar
  20. 20.
    G. M. Fless, R. W. Wissler, and A. M. Scanu, Study of abnormal plasma low-density lipoproteins in rhesus monkeys with diet-induced hyperlipidemia, Biochemistry 15: 5799 (1976).CrossRefGoogle Scholar
  21. 21.
    L. L. Rudel, L. L. Pitts, II, and C. A. Nelson, Characterization of plasma low density lipoproteins of nonhuman primates fed dietary cholesterol, J. Lipid Res. 18: 211 (1977).Google Scholar
  22. 22.
    K. V. Krishnaiah, L. F. Walker, J. Borensztajn, G. Schonfeld, and G. S. Getz, Apolipoprotein B variant derived from the rat intestine, Proc. Nat. Acad. Sci. 17: 3806 (1980).CrossRefGoogle Scholar
  23. 23.
    G. M. Fless, T. Kirchhausen, K. Fischer-Dzoga, R. W. Wissler, and A. M. Scanu, Relationship between the properties of the apo B containing low-density lipoproteins (LDL) of normolipidemic rhesus monkeys and their mitogenic action on arterial smooth muscle cells grown in vitro, in: Atherosclerosis V, A. M. Gotto, Jr., L. C. Smith, and B. Allen, eds., p. 607, Springer-Verlag, New York (1980).CrossRefGoogle Scholar
  24. 24.
    G. M. Fless, T. Kirchhausen, K. Fischer-Dzoga, R. W. Wissler, and A. M. Scanu, Serum low-density lipoproteins with mitogenic effect on cultured aortic smooth muscle cells, Atherosclerosis 41: 171 (1982).CrossRefGoogle Scholar
  25. 25.
    E. P. Benditt, Implications of the monoclonal character of human atherosclerotic plaques, Am. J. Pathol. 86: 693 (1977).Google Scholar
  26. 26.
    J. Chamley-Campbell, G. R. Campbell, and R. Ross, The smooth muscle cell in culture, Physiol. Rev. 59: 1 (1979).Google Scholar
  27. 27.
    C. Gajdusek, P. DiCorleto, R. Ross, and S. M. Schwartz, An endothelial cell-derived growth factor, J. Cell Biol. 85: 467(1980).CrossRefGoogle Scholar
  28. 28.
    S. J. Leibovich and R. Ross, A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro, Am. J. Pathol. 84: 501 (1976).Google Scholar
  29. 29.
    E. P. Benditt and J. M. Benditt, Evidence for a monoclonal origin of human atherosclerotic plaques, Proc. Nat. Acad. Sci. 70: 1753 (1973).CrossRefGoogle Scholar
  30. 30.
    G. R. Campbell and J. H. Chamley-Campbell, The cellular paleobiology of atherosclerosis, Pathology 13: 423 (1981).CrossRefGoogle Scholar
  31. 31.
    J. L. Goldstein and M. S. Brown, The low-density lipoprotein pathway and its relation to atherosclerosis, Ann. Rev. Biochem. 46: 897 (1977).CrossRefGoogle Scholar
  32. 32.
    C. DeDuve, The participation of lysosomes in the transformation of smooth muscle cells to foamy cells in the aorta of cholesterol-fed rabbits, Acta Cardiol. Suppl. 20: 9 (1974).Google Scholar
  33. 33.
    J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, A binding site on macrophages that mediates the uptake and degradation of acetylated low-density lipoprotein producing massive cholesterol deposition, Proc. Nat. Acad. Sci. 76: 333 (1979).CrossRefGoogle Scholar
  34. 34.
    R. W. Wissler and D. Vesselinovitch, Atherosclerosis—relationship to coronary blood flow, Am. J. Cardiol. 52: 2A (1983).CrossRefGoogle Scholar
  35. 35.
    R. W. Wissler and D. Vesselinovitch, Experimental models of human atherosclerosis, Ann. N. Y. Acad. Sci. 149: 907 (1968).Google Scholar
  36. 36.
    T. Schaffner, V. M Einer, M. Bauer, and R. W. Wissler, Acid lipase: a histochemical and biochemical study using triton X100-naphthyl palmitate micelles, J. Histochem. Cytochem. 26: 969 (1978).CrossRefGoogle Scholar
  37. 37.
    T. Schaffner, K. Taylor, E. J. Bartucci, K. Fischer-Dzoga, J. H. Beeson, S. Glagov, and R. W. Wissler, Arterial foam cells exhibit distinctive immunomorphologic and histochemical features of macrophages, Am. J. Pathol. 100: 57 (1980).Google Scholar
  38. 38.
    D. Vesselinovitch and R. W. Wissler, Correlation of types of induced lesions with regression of coronary atherosclerosis in two species of macaques, in: Lipoproteins and Coronary Atherosclerosis, G. Noseda, C. Fragiacomo, R. Fumagalli, and R. Paoletti, eds., p. 401. Elsevier, Amsterdam (1982).Google Scholar
  39. 39.
    D. Vesselinovitch and R. W. Wissler, Quantitation of certain qualitative differences in the atherosclerotic process, in: Atherosclerosis VI, G. Schettler, A. M. Gotto, G. Middelhoff, A. S. Habenicht, and K. R. Jurutka, eds., p. 174, Springer-Verlag, Berlin (1983).CrossRefGoogle Scholar
  40. 40.
    H. R. Davis, Jr., Comparative Pathological Study of Atherosclerosis in Two Monkey Species, Ph.D. Thesis, University of Chicago (1982).Google Scholar
  41. 41.
    R. W. Wissler and D. Vesselinovitch, New concepts of factors involved in the natural history and regression of atherosclerosis, Periodica Angiologica (in press, 1983).Google Scholar
  42. 42.
    A. R. Rich and J. E. Gregory, The experimental demonstration that periarteritis nodosa is a manifestation of hypersensitivity, Bull. Johns Hopkins Hosp. 72: 65 (1943).Google Scholar
  43. 43.
    H. C. Hopps and R. W. Wissler, The experimental production of generalized arteritis and periarteritis (periarteritis nodosa), J. Lab. Clin. Med. 31: 939 (1946).Google Scholar
  44. 44.
    C. R. Minick, G. E. Murphy, and W. C. Campbell, Experimental induction of atherosclerosis by the synergy of allergic injury to arteries and lipid rich diet. I. Effect of repeated injection of horse serum in rabbits fed dietary cholesterol supplement, J. Exp. Med. 124: 635 (1966).CrossRefGoogle Scholar
  45. 45.
    C. R. Minick and G. E. Murphy, Experimental induction of atherosclerosis by the synergy of allergic injury to arteries and lipid-rich diet. II. Effect of repeatedly injected foreign protein in rabbits fed a lipid-rich, cholesterol-poor diet, Am. J. Pathol. 73: 265 (1975).Google Scholar
  46. 46.
    L. M. Buja, L. D. Hillis, C. S. Petty, and J. T. Willerson, The role of coronary arterial spasm in ischemic heart disease, Arch. Pathol. Lab. Med. 105: 221 (1981).Google Scholar
  47. 47.
    M. L. Armstrong and M. G. Megan, Responses of two macaque species to atherogenic diet and its withdrawal, in: Atherosclerosis III, G. Schettler and A. Weizel, eds., p. 336, Springer-Verlag, Berlin (1974).CrossRefGoogle Scholar
  48. 48.
    W. Hollander, B. Kirkpatrick, B. Paddock, J. Colombo, M. Nagraj, and S. Prusty, Studies on the progression and regression of coronary and peripheral atherosclerosis in the cynomolgus monkey, Exp. Mol. Pathol. 30: 55 (1979).CrossRefGoogle Scholar
  49. 49.
    D. Vesselinovitch, G. S. Getz, R. H. Hughes, and R. W. Wissler, Atherosclerosis in the rhesus monkey fed three food fats, Atherosclerosis 20: 303 (1974).CrossRefGoogle Scholar
  50. 50.
    D. Vesselinovitch, R. W. Wissler, T. J. Schaffner, and J. Borensztajn, The effects of various diets on atherogenesis in rhesus monkeys, Atherosclerosis 35: 189 (1980).CrossRefGoogle Scholar
  51. 51.
    D. Kritchevsky, S. A. Tepper, D. Vesselinovitch, and R. W. Wissler, Cholesterol vehicle in experimental atherosclerosis. Part 13, Randomized peanut oil, Atherosclerosis 17: 225 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Robert W. Wissler
    • 1
  1. 1.The Department of Pathology and The Specialized Center of Research in AtherosclerosisThe University of ChicagoChicagoUSA

Personalised recommendations