Prime Numbers

  • Richard K. Guy
Part of the Unsolved Problems in Intuitive Mathematics book series (PBM, volume 1)

Abstract

We can partition the positive integers into three classes:
  • the unit, 1

  • the primes, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,...

  • the composite numbers, 4, 6, 8, 9, 10,...

A number greater than 1 is prime if its only positive divisors are 1 and itself; otherwise it’s composite. Primes have interested mathematicians at least since Euclid, who showed that there were infinitely many.

Keywords

Number Theory Prime Number Unsolved Problem Arithmetic Progression Primality Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. A. Schinzel and W. Sierpinski, Sur certains hypothèses concernant les nombres premiers, Acta Arith. 4 (1958) 185–208 (erratum 5 (1959) 259); MR 21 #4936.Google Scholar
  2. Leonard Adleman and Frank Thomson Leighton, An 0(n“ ° 89 ) primality testing algorithm, Math. Comput. 36 (1981) 261–266.MathSciNetMATHGoogle Scholar
  3. Leonard M. Adleman, Carl Pomerance and Robert S. Rumely, On distinguishing prime numbers from composite numbers (to appear)Google Scholar
  4. R. P. Brent, An improved Monte Carlo factorization algorithm, BIT, 20 (1980), 176–184.MathSciNetMATHCrossRefGoogle Scholar
  5. John D. Dixon, Asymptotically fast factorization of integers, Math. Comput. 36 (1981) 255–260.Google Scholar
  6. Richard K. Guy, How to factor a number, Congressus Numerantium XVI Proc. 5th Manitoba Conf. Numer. Math., Winnipeg, 1975, 49–89.Google Scholar
  7. H. W. Lenstra, Primality testing, Studieweek Getaltheorie en Computers, Stichting Mathematisch Centrum, Amsterdam, 1980, 41–60.Google Scholar
  8. G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci., 13 (1976) 300–317.MathSciNetMATHCrossRefGoogle Scholar
  9. J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974) 521–528.MathSciNetMATHCrossRefGoogle Scholar
  10. J. M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975) 331–334; MR 50 #6992.Google Scholar
  11. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Communications A.C.M., Feb. 1978.Google Scholar
  12. R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977) 84–85; erratum 7 (1978) 118; MR 57 #5885.Google Scholar
  13. H. C. Williams, Primality testing on a computer, Ars Combin. 5 (1978) 127–185. MR 80d: 10002.Google Scholar
  14. H. C. Williams and R. Holte, Some observations on primality testing, Math. Comput. 32 (1978) 905–917; MR 57 # 16184.Google Scholar
  15. H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions, Math. Comput. 30 (1976) 867–886.MathSciNetMATHGoogle Scholar
  16. Martin Gardner, The remarkable lore of prime numbers, Scientific Amer. 210 ## 3 (Mar. 1964) 120–128.Google Scholar
  17. G. H. Hardy and J. E. Littlewood, Some problems of `partitio numerorum’ III: on the expression of a number as a sum of primes, Acta Math. 44 (1922) 1–70.MathSciNetCrossRefGoogle Scholar
  18. Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978) 171–188; MR 58 #5553.Google Scholar
  19. Carl Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory 12 (1980) 218–223.MathSciNetMATHCrossRefGoogle Scholar
  20. I. I. Pyateckii-Sapiro, On the distribution in sequences of the form [f(n)], Mat. Sbornik N.S. 33 (1953) 559–566; MR 15, 507.Google Scholar
  21. I. 0. Angell and H. J. Godwin, Some factorizations of 10“ + 1, Math. Comput. 28 (1974) 307–308.MathSciNetMATHGoogle Scholar
  22. Alan Borning, Some results for k! + 1 and 2 • 3 • 5 • • • p + 1, Math. Comput. 26 (1972) 567–570.Google Scholar
  23. Martin Gardner, Mathematical Games, Sci. Amer. 243 #6 (Dec. 1980) 18–28. Solomon W. Golomb, On Fortune’s conjecture, Math. Mag. (to appear)Google Scholar
  24. S. Kravitz and D. E. Penney, An extension of Trigg’s table, Math. Mag. 48 (1975)92–96.Google Scholar
  25. Mark Templer, On the primality of k! + I and 2 * 3 * 5 * • • • * p + 1, Math. Comput. 34 (1980) 303–304.Google Scholar
  26. George E. Andrews, Some formulae for the Fibonacci sequence with generalizations, Fibonacci Quart. 7 (1969) 113–130; MR 39 4088.Google Scholar
  27. R. C. Archibald, Scripta Math. 3 (1935) 117.Google Scholar
  28. Robert Baillie, New primes of the form k 2“ + 1, Math. Comput. 33 (1979)1333–1336; MR 10009.Google Scholar
  29. Richard P. Brent, Factorization of the eighth Fermat number, Abstracts Amer. Math. Soc. 1 (1980) 565.Google Scholar
  30. Richard P. Brent and J. M. Pollard, Factorization of the eighth Fermat number, Math. Comput. 36 (1981)Google Scholar
  31. John Brillhart, D. H. Lehmer and J. L. Selfridge, New primality criteria and factor-zations of 2’ + 1, Math. Comput. 29 (1975) 620–627; MR 52 #5546.Google Scholar
  32. John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Factorizations of h“ - 1 and b” + 1, b - 13, Amer. Math. Soc.,Providence, 1981, (to appear)Google Scholar
  33. J. Brillhart, J. Tonascia and P. Weinberger, On the Fermat quotient, in A. O. L. Atkin and B. J. Birch (eds.) Computers in Number Theory, Academic Press, London, 1971, pp. 213–222.Google Scholar
  34. Martin Gardner, Mathematical games: The strong law of small numbers, Sci. Amer. 243 #6 (Dec. 1980), 18–28.Google Scholar
  35. Donald B. Gillies, Three new Mersenne primes and a statistical theory, Math. Comput. 18 (1964) 93–97.CrossRefGoogle Scholar
  36. Gary B. Gostin, A factor of F„, Math. Comput. 35 (1980) 975–976.MATHGoogle Scholar
  37. Gary B. Gostin and Philip B. McLaughlin, Five new factors of Fermat numbers, Math. Comput.,(to appear)Google Scholar
  38. R. L. Graham, A. Fibonacci-like sequence of composite numbers, Math. Mag. 37 (1964) 322–324.MATHCrossRefGoogle Scholar
  39. John C. Hallyburton and John Brillhart, Two new factors of Fermat numbers, Math. Comput. 29 (1975) 109–112; MR 51 #5460. Corrigendum 30 (1976) 198; MR 52 #13599.Google Scholar
  40. M Kraitchik, Sphinx,1931, 31.Google Scholar
  41. D. H. Lehmer Sphinx1931, 32, 164. Google Scholar
  42. E. Lucas, Théorie des fonctions numériques simplements périodiques, Amer. J. Math. 1 (1878) 184–240, 289–321 (esp. p. 316)Google Scholar
  43. G. Matthew and H. C. Williams, Some new primes of the form k • 2“ + 1, Math. Comput. 31 (1977) 797–798; MR 55 #12605.Google Scholar
  44. Michael A. Morrison and John Brillhart, A method of factoring and the factorization of F7, Math. Comput. 29 (1975)183–205.Google Scholar
  45. Curt Noll and Laura Nickel, The 25th and 26th Mersenne primes, Math. Comput. 35 (1980) 1387–1390.MathSciNetMATHCrossRefGoogle Scholar
  46. Rudolf Ondrejka, Primes with 100 or more digits, J. Recreational Math. 2 (1969) 42–44; Addenda, 3 (1970) 161–162; More on large primes, 11 (1979) 112–113; MR 80g:10012. Google Scholar
  47. R. E. Powers Amer. Math. Monthly18 (1911) 195–197; Proc. London Math. Soc. (2) 13 (1919) 39. Google Scholar
  48. Raphael M. Robinson, A report on primes of the form k • 2“ + 1 and on factors of Fermat numbers, Proc. Amer. Math. Soc. 9 (1958) 673–681; MR 20 #3097.Google Scholar
  49. D. E. Shippee, Four new factors of Fermat numbers, Math. Comput. 32 (1978) 941. David Slowinski, Searching for the 27th Mersenne prime, J. Recreational Math. 11 (1978–79) 258–261; MR 80g:10013. Google Scholar
  50. C. L. Stewart, The greatest prime factor of An — B“, Acta Arith. 26 (1975) 427–433.MATHGoogle Scholar
  51. C. L. Stewart, Divisor properties of arithmetical sequences, PhD. thesis, Cambridge, 1976.Google Scholar
  52. Bryant Tuckerman, The 24th Mersenne prime, Proc. Nat. Acad. Sci. U.S.A. 68 (1971) 2319–2320.MathSciNetMATHCrossRefGoogle Scholar
  53. D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960) 525–532; MR 22 #10945. Google Scholar
  54. H. C. Williams, Some primes with interesting digit patterns Math. Comput. 32 (1978) 1306–1310; MR 58 #484; Zbl. 388.10007. Google Scholar
  55. H. C. Williams and E. Seah, Some primes of the form (a“ — 1)l(a — 1) Math. Comput. 33 (1979) 1337–1342; MR 80g:10014. Google Scholar
  56. Samuel Yates, The mystique of repunits, Math. Mag. 51 (1978) 22–28; MR 80f:10008. Google Scholar
  57. Carter Bays and Richard H. Hudson, The appearance of tens of billions of integers x with n24,13(x) - 724,1 (X) in the vicinity of 1012, J. reine angew. Math. 299/300 (1978) 234–237; MR 57 #12418.Google Scholar
  58. Carter Bays and Richard H. Hudson, Details of the first region of integers x with n3 2(x)–n3,1(x), Math. Comput. 32 (1978) 571–576.MathSciNetMATHGoogle Scholar
  59. Carter Bays and Richard H. Hudson, Numerical and graphical description of all axis crossing regions for the moduli 4 and 8 which occur before 1012, Internat. J. Math. Sci. 2 (1979) 111–119; MR 80h: 10003.Google Scholar
  60. Richard H. Hudson, A common combinatorial principle underlies Riemann’s formula, the Chebyshev phenomenon, and other subtle effects in comparative prime number theory I, J. reine angew. Math. 313 (1980) 133–150.MathSciNetMATHGoogle Scholar
  61. S. Knapowski and P. Turân, Über einige Fragen der vergleichenden Primzahltheorie, Number Theory and Analysis,Plenum Press, New York, 1969, 157==171.Google Scholar
  62. S. Knapowski and P. Turân, On prime numbers =1 resp. 3 (mod 4), Number Theory and Algebra,Academic Press, N.Y. 1977, pp. 157–165; MR 57 #5926.Google Scholar
  63. John Leech, Note on the distribution of prime numbers, J. London Math. Soc. 32 (1957) 56–58.MathSciNetMATHGoogle Scholar
  64. Daniel Shanks, Quadratic residues and the distribution of primes, Math. Tables Aids Comput. 13 (1959) 272–284.MathSciNetMATHCrossRefGoogle Scholar
  65. P. Erdös and P. Turk), On certain sequences of integers, J. London Math. Soc. 11 (1936) 261–264.CrossRefGoogle Scholar
  66. J. Gerver, The sum of the reciprocals of a set of integers with no arithmetic progression of k terms, Proc. Amer. Math. Soc. 62 (1977) 211–214.MathSciNetMATHGoogle Scholar
  67. Joseph L. Gerver and L. Thomas Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comput. 33 (1979) 1353–1359.MathSciNetMATHGoogle Scholar
  68. V. A. Golubev, Faktorisation der Zahlen der Form x 3 + 4x2 + 3x + 1, Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. K1. 1969,184–191 (see also 191–194; 297–301; 1970, 106–112; 1972, 19–20, 178–179 ).Google Scholar
  69. Emil Grosswald, Long arithmetic progressions that consist only of primes and almost primes, Notices Amer. Math. Soc. 26 (1979) A-451.Google Scholar
  70. E. Grosswald, Arithmetic progressions of arbitrary length and consisting only of primes and almost primes, J. reine angew. Math. 317 (1980) 200–208.MathSciNetMATHGoogle Scholar
  71. Emil Grosswald and Peter Hagis, Arithmetic progressions consisting only of primes, Math. Comput. 33 (1979) 1343–1352; MR 80k: 10054.Google Scholar
  72. H. Halberstam, D. R. Heath-Brown, and H.-E. Richert, On almost-primes in short intervals, Proc. Durham Sympos. Anal. Number Theory (to appear).Google Scholar
  73. D. R. Heath-Brown, Almost-primes in arithmetic progressions and short intervals, Math. Proc. Cambridge Philos. Soc.,83 (1978) 357–375; MR 58 #10789.Google Scholar
  74. Edgar Karst, 12–16 primes in arithmetical progression, J. Recreational Math. 2 (1969) 214–215.Google Scholar
  75. E. Karst, Lists of ten or more primes in arithmetical progressions, Scripta Math. 28 (1970) 313–317.MATHGoogle Scholar
  76. E. Karst and S. C. Root, Teilfolgen von Primzahlen in arithmetischer Progression, Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. KI. 1972, 19–20 (see also 178–179). Carl Pomerance, The prime number graph, Math. Comput. 33 (1979) 399–408; MR 80d:10013.Google Scholar
  77. W. Sierpinski, Remarque sur les progressions arithmétiques, Colloq. Math. 3 (1955) 44–49.MathSciNetGoogle Scholar
  78. Sol Weintraub, Seventeen primes in arithmetic progression, Math. Comput. 31 (1977) 1030.Google Scholar
  79. S. Weintraub, Primes in arithmetic progression, BIT 17 (1977) 239–243.Google Scholar
  80. K. Zarankiewicz, Problem 117, Colloq. Math. 3 (1955) 46, 73.Google Scholar
  81. S. Chowla, There exists an infinity of 3-combinations of primes in A.P., Proc. Lahore Philos. Soc. 6 no. 2 (1944) 15–16; MR 7, 243.Google Scholar
  82. P. Erdös, and A. Rényi, Some problems and results on consecutive primes, Simon Stevin,27 (1950) 115–125; MR 11,644.Google Scholar
  83. M. F. Jones, M. Lal, and W. J. Blundon, Statistics on certain large primes, Math. Comput. 21 (1967) 103–107; MR 36 #3707.Google Scholar
  84. L. J. Lander and T. R. Parkin, Consecutive primes in arithmetic progression, Math. Comput. 21 (1967) 489.MATHGoogle Scholar
  85. D. H. Lehmer, Tests for primality by the converse of Fermat’s theorem, Bull. Amer. Math. Soc. 33 (1927) 327–340.MathSciNetMATHCrossRefGoogle Scholar
  86. D. H. Lehmer, On certain chains of primes, Proc. London Math. Soc. 14A (Littlewood 80 volume, 1965 ) 183–186.Google Scholar
  87. A. O. L. Atkin and N. W. Rickert, On a larger pair of twin primes. Abstract 79T-A132, Notices Amer. Math. Soc. 26 (1979) A-373.Google Scholar
  88. Robert Baillie, New primes of the form k • 2“ + 1, Math. Comput. 33 (1979)1333–1336. E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. Ser. A, 293 (1966) 1–18; MR 33 #7314.Google Scholar
  89. Richard P. Brent, The first occurrence of large gaps between successive primes, Math. Comput. 27 (1973) 959–963; MR 48 #8360 (and see 35 (1980) 1435–1436 ).MATHGoogle Scholar
  90. J. H. Cadwell, Large intervals between consecutive primes, Math. Comput. 25 (1971) 909–913.MathSciNetMATHCrossRefGoogle Scholar
  91. Chen Jing-Run, On the distribution of almost primes in an interval II, Sci. Sinica 22 (1979) 253–275; Zbl 408. 10030.Google Scholar
  92. R. J. Cook, On the occurrence of large gaps between prime numbers, Glasgow Math. J. 20 (1979) 43–48; MR 80e:10034. Google Scholar
  93. Harald Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1937) 23–46.Google Scholar
  94. R. E. Crandall and M. A. Penk, A search for large twin prime pairs, Math. Comput. 33 (1979) 383–388; MR 81a:10010. Google Scholar
  95. D. R. Heath-Brown, The difference between consecutive primes, J. London Math. Soc. (2) 18 (1978) 7–13, 19 (1979) 207–220; 20 (1979) 177–178; MR 58 #10787; 80k: 10041; 81f: 10055.Google Scholar
  96. D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Inventiones Math. 55 (1979) 49–69; MR 81h: 10064; see also Bull. Amer. Math. Soc. (N.S.) 1(1979) 758–760; MR 80d: 10064.Google Scholar
  97. Martin N. Huxley, The difference between consecutive primes, Proc. Symp. Pure Math. Amer. Math. Soc. 24 (Analytic Number Theory, St. Louis, 1972) 141–145; MR 50 #9816.Google Scholar
  98. Martin N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972) 164–170.MathSciNetGoogle Scholar
  99. M. N. Huxley, A note on large gaps between prime numbers, Acta Arith. 38 (1980) 63–68.MathSciNetMATHGoogle Scholar
  100. M. N. Huxley, Small differences between consecutive primes I, Mathematika,20 (1973) 229–232; MR 50 #4509; II, 24 (1977) 142–152; MR 57 #5925Google Scholar
  101. Aleksandar Ivie, On sums of large differences between consecutive primes, Math. Ann. 241 (1979) 1–9; MR 80i:10057. Google Scholar
  102. Henryk Iwaniec and Matti Jutila, Primes in short intervals, Ark. Mat. 17 (1979) 167176; Zbl. 408. 10029.Google Scholar
  103. L. J. Lander and T. R. Parkin, On first appearance of prime differences, Math. Comput. 21(1967) 483–488; MR 37 #6237.Google Scholar
  104. D. H. Lehmer, Table concerning the distribution of primes up to 37 millions, 1957, deposited in UMT file, reviewed in Math. Tables Aids Comput. 13 (1959) 56–57.Google Scholar
  105. R. A. Rankin, The difference between consecutive primes, J. London Math. Soc. 13 (1938) 242–247; II Proc. Cambridge Philos. Soc. 36 (1940) 255–266; MR 1–292; III J. London Math. Soc. 22 (1947) 226–230; MR 9–498; IV Proc. Amer. Math. Soc. 1 (1950) 143–150; MR 11–644; V Proc. Edinburgh Math. Soc. (2) 13 (1962–63) 331–332; MR 28 #3978.Google Scholar
  106. H. Riesel, Lucasian criteria for the primality of N = h • 2“–1, Math. Comput. 23 (1969) 869–875.MathSciNetMATHGoogle Scholar
  107. Daniel Shanks, On maximal gaps between successive primes, Math. Comput. 18 (1964) 646–651; MR 29 #4745.Google Scholar
  108. Sol Weintraub, A large prime gap, Math. Comput. 36 (1981) 279.MathSciNetMATHCrossRefGoogle Scholar
  109. H. C. Williams, Primality testing on a computer, Ars Combinatoria,5 (1978) 172–185. H. C. Williams and C. R. Zarnke, A report on prime numbers of the form M = Google Scholar
  110. a + 1)22m-’ - 1 and M’ = (6a - 1)22-1, Math. Comput. 22 (1968) 420–422. D. Wolke, Grosse Differenzen zwischen aufeinanderfolgenden Primzahlen, Math. Ann. 218 (1975) 269–271; MR 56 #11930.Google Scholar
  111. R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math Tables Aids Comput. 13 (1959) 121–122; MR 21 #4943.Google Scholar
  112. Paul Erdös and Ian Richards, Density functions for prime and relatively prime numbers, Monatsh. Math. 83 (1977) 99–112; Zbl. 355.10034.Google Scholar
  113. Douglas Hensley and Ian Richards, On the incompatibility of two conjectures concerning primes, Proc. Symp. Pure Math. Amer. Math. Soc. 24 (Analytic Number Theory, St. Louis, 1972 ) 123–127.Google Scholar
  114. Ian Richards, On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem, Bull. Amer. Math. Soc. 80 (1974) 419–438.MathSciNetMATHCrossRefGoogle Scholar
  115. Herschel F. Smith, On a generalization of the prime pair problem, Math. Tables Aids Comput. 11 (1957) 249–254.MathSciNetMATHCrossRefGoogle Scholar
  116. P. Erdös, On the difference of consecutive primes, Bull. Amer. Math. Soc. 54 (1948) 885–889; MR 10,235.Google Scholar
  117. P. Erdös and P. Turân, On some new questions on the distribution of prime numbers, Bull. Amer. Math. Soc. 54 (1948) 371–378; MR 9, 498.Google Scholar
  118. N. G. W. H. Beeger, On even numbers m dividing 2m - 2, Amer. Math. Monthly, 58 (1951) 553–555; MR 13, 320.Google Scholar
  119. R. D. Carmichael, On composite numbers P which satisfy the Fermat congruence aP-1- 1 mod P Amer. Math. Monthly 19 (1912) 22–27. Google Scholar
  120. M. Cipolla, Sui numeri composti P the verificiano la congruenza di Fermat aP-’ - 1 (mod P) Annali di Matematica 9 (1904)139–160. Google Scholar
  121. P. Erdös, On the converse of Fermat’s theorem, Amer. Math. Monthly 56 (1949) 623624; MR 11 331.Google Scholar
  122. P. Erdös, On almost primes, Amer. Math. Monthly 57 (1950) 404–407; MR 12, 80.Google Scholar
  123. D. H. Lehmer, On the converse of Fermat’s theorem, Amer. Math. Monthly 43 (1936) 347–354; II, 56 (1949) 300–309; MR 10 681.Google Scholar
  124. Andrzej Makowski, On a problem of Rotkiewicz on pseudoprime numbers Elem. Math. 29 (1974)13. Google Scholar
  125. A. Mpkowski and A. Rotkiewicz, On pseudoprime numbers of special form Colloq. Math. 20 (1969) 269–271; MR 39 #5458. Google Scholar
  126. Carl Pomerance, Illinois J. Math. (to appear). Carl Pomerance, On the distribution of pseudoprimes Math. Comput. (to appear). Carl Pomerance, John L. Selfridge, and Samuel S. Wagstaff, The pseudoprimes to 25 10 9 Math. Comput. 35 (1980) 1003–1026. Google Scholar
  127. A. Rotkiewicz, Pseudoprime Numbers and their Generalizations,Student Association of the Faculty of Sciences, Univ. of Novi Sad, 1972; MR 48 #8373; Zbl. 324.10007. A. Rotkiewicz, Sur les diviseurs composés des nombres an - b“, Bull. Soc. Roy. Sci. Liège 32 (1963) 191–195; MR 26 #3645.Google Scholar
  128. A. Rotkiewicz, Sur les nombres pseudopremiers de la forme ax + b, Comptes Rendus Acad. Sci. Paris 257 (1963) 2601–2604; MR 29 #61.Google Scholar
  129. A. Rotkiewicz, Sur les formules donnant des nombres pseudopremiers, Colloq. Math. 12 (1964) 69–72; MR 29 #3416.Google Scholar
  130. A. Rotkiewicz, Sur les nombres pseudopremiers de la forme nk + 1, Elem. Math. 21 (1966) 32–33; MR 33 #112.Google Scholar
  131. K. Szymiczek, On prime numbers p, q and r such that pq, pr and qr are pseudoprimes, Colloq. Math. 13 (1964–65) 259–263; MR 31 #4757.Google Scholar
  132. K. Szymiczek, On pseudoprime numbers which are products of distinct primes, Amer. Math. Monthly 74 (1967) 35–37; MR 34 #5746.Google Scholar
  133. Robert Baillie and Samuel S. Wagstaff, Lucas pseudoprimes, Math. Comput. 35 (1980) 1391–1417.MathSciNetMATHCrossRefGoogle Scholar
  134. P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956) 201–206; MR 18 18.Google Scholar
  135. Jay Roderick Hill, Large Carmichael numbers with three prime factors, Abstract 79T-A136, Notices Amer. Math. Soc. 26 (1979) A-374.Google Scholar
  136. W. Knödel, Eine obere Schranke für die Anzahl der Carmichaelschen Zahlen kleiner als x, Arch. Math. 4 (1953) 282–284; MR 15 289.Google Scholar
  137. D. H. Lehmer, Strong Carmichael numbers, J. Austral. Math. Soc. Ser. A 21 (1976) 508–510.Google Scholar
  138. A. J. van der Poorten and A. Rotkiewicz, On strong pseudoprimes in arithmetic progressions, J. Austral. Math. Soc. Ser. A, 29 (1980) 316–321.MATHGoogle Scholar
  139. S. S. Wagstaff, Large Carmichael numbers, Math. J. Okayama Univ. 22 (1980) 33–41. H. C. Williams, On numbers analogous to Carmichael numbers, Canad. Math. Bull. 20 (1977) 133–143.MathSciNetCrossRefGoogle Scholar
  140. M. Yorinaga, Numerical computation of Carmichael numbers, Math. J. Okayama Univ. 20 (1978) 151–163. MR 80d:10026. Google Scholar
  141. J. H. Jordan and J. R. Rabung, A conjecture of Paul Erdös concerning Gaussian primes, Math. Comput. 24 (1970) 221–223.MathSciNetMATHGoogle Scholar
  142. L. E. Dickson, History of the Theory of Numbers, G. E. Stechert and Co, New York, 1934, Vol. I, Chap. XVIII.Google Scholar
  143. G. Giuga, Sopra alcune proprietà caratteristiche dei numeri primi, Period. Math. (4) 23 (1943) 12–27; MR 8, 11.Google Scholar
  144. Giuseppe Giuga, Su una presumibile proprietà caratteristica dei numeri primi, Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat. (3) 14 (83) (1950) 511–528; MR 13, 725. W. Sierpinski, Elementary Number Theory,p. 205.Google Scholar
  145. C. P. Willans, On formulae for the Nth prime number, Math. Gaz. 48 (1964) 413–415. C. P. Wormell, Formulae for primes, Math. Gaz. 51 (1967) 36–38.Google Scholar
  146. P. Erdös, Problems in Number Theory and Combinatorics, Congressus Numerantium XVIII, Proc. 6th Conf. Numerical Math., Manitoba, 1976, 35–58 (esp. p. 53); MR 80e: 10005.Google Scholar
  147. Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers Math. Comput. 29 (1975) 79–81. Google Scholar
  148. R. Crocker, On the sum of a prime and of two powers of two, Pacific J. Math. 36 (1971) 103–107; MR 43 #3200.Google Scholar
  149. P. Erdös, On integers of the form 2’ + p and some related problems Summa Brasil. Math. 2 (1947–51) 113–123; MR 13, 437. Google Scholar
  150. Patrick X. Gallagher, Primes and powers of 2 Inventiones Math. 29 (1975) 125–142. W. E. Mientka and R. C. Weitzenkamp, On f-plentiful numbers J. Combin. Theory 7 (1969) 374–377. Google Scholar
  151. A. de Polignac, Recherches nouvelles sur les nombres premiers, C. R. Acad. Sci. Paris 29 (1849) 397–401, 738–739.Google Scholar
  152. R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory 5 (1973) 64–79; MR 49 #7222.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Richard K. Guy
    • 1
  1. 1.Department of Mathematics and StatisticsThe University of CalgaryCalgaryCanada

Personalised recommendations