Potential Energy Surfaces in Excited States of Saturated Molecules

  • Mark S. Gordon

Abstract

The vacuum UV photlysis of acyclic alkanes in the low-energy or threshold region of their spectra is characterized by two-bond cleavages. Thus, the simplest alkane, CH4, dissociates almost exclusively to methylene and molecular hydrogen in the threshold region:1
$$CH_{4}\overset{h\nu }{\rightarrow}CH_{2}+H_{2}$$
(1)

Keywords

Potential Energy Surface Hydrogen Sulfide Rydberg State Generalize Valence Bond Nonlinear Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ausloos and S. G. Lias, Far ultraviolet photochemistry of organic compounds, in: “Chemical Spectroscopy and Photochemistry in the Vacuum Ultraviolet”, D. Reidel, Boston (1974), p. 465.CrossRefGoogle Scholar
  2. 2.
    D. W. L. Griffiths and R. A. Back, Flash photolysis of propane, J. Chem. Phys. 46: 3913 (1967).CrossRefGoogle Scholar
  3. 3.
    R. A. Back and S. Koda, The photodissociation of ammonia in the \(A\tilde{}\rightarrow X\tilde{}\) absorption system. II. Translational excitation of the hydrogen atoms produced and the mechanism of the pre-dissociation, Can. J. Chem. 55: 1387 (1977) and references cited therein.CrossRefGoogle Scholar
  4. 4.
    C. R. Claydon, G. A. Segal, and H. S. Taylor, Theoretical interpretation of the optical and electron scattering spectra of H2O, J. Chem. Phys. 54: 3799 (1971) and references cited therein.CrossRefGoogle Scholar
  5. 5.
    K. Obi, A. Clement, H. E. Gunning, and O. P. Strausz, The photochemistry of silicon compounds., II. The vacuum ultraviolet photolysis of methylsilane, J. Amer. Chem. Soc. 91: 1622 (1969).CrossRefGoogle Scholar
  6. 6.
    G. P. Sturm and J. M. White, Photodissociation of hydrogen sulfide and methanethiol. Wavelength dependence of the distribution of energy in the primary products, J. Chem. Phys. 50: 5035 (1969).CrossRefGoogle Scholar
  7. L. E. Compton, J. L. Gole, and R. M. Martin, Kinetics of hot hydrogen atoms from H2S photodissociation at 1850 Å, J. Phys. Chem. 73: 1158 (1969).CrossRefGoogle Scholar
  8. B. deB. Darwent, R. L. Wadllnger, and M. J. Allard, The photochemical decomposition of hydrogen sulfide. The reactions of hydrogen atoms and HS radicals, J. Phys. Chem. 71: 2346 (1967).CrossRefGoogle Scholar
  9. 7.
    G. Di Stefano, M. Lenzi, A. Margani, and C. N. Xuan, The (b 1+ state of PH in the vacuum ultraviolet photolysis of phosphine, J. Chem. Phys. 68: 959 (1978).CrossRefGoogle Scholar
  10. 8.
    M. B. Robin, “Higher Excited States of Polyatomic Molecules”, Academic Press, New York (1974).Google Scholar
  11. 9.
    D. G. Truhlar, Application of the configuration-interaction method and the random phase approximation to the Ab initio calculation of electron excitation energies of H2O, Int. J. Quantum Chem. 7: 807 (1973).CrossRefGoogle Scholar
  12. 10.
    W. A. Goddard III and W. J. Hunt, The Rydberg nature and assignments of excited states of the water molecule, Chem. Phys. Lett. 24: 464 (1974).CrossRefGoogle Scholar
  13. 11.
    R. J. Buenker and S. D. Peyerimhoff, Ab initio calculations on the electronic spectrum of ethane, Chem. Phys. 8: 56 (1975).CrossRefGoogle Scholar
  14. 12.
    S. Shih, S. D. Peyerimhoff, and R. J. Buenker, Ab initio configuration interaction calculations for the electronic spectrum of hydrogen sulfide, Chem. Phys. 17: 391 (1976).CrossRefGoogle Scholar
  15. 13.
    W. R. Wadt and W. A. Goddard III, The low-lying excited states of water, methanol, and dimethyl ether, Chem. Phys. 18: 1 (1976).CrossRefGoogle Scholar
  16. 14.
    R. Rianda, R. P. Frueholz, and W. A. Goddard III, The low-lying states of ammonia: Generalized valence bond and configuration interaction studies, Chem. Phys. 19: 131 (1977).CrossRefGoogle Scholar
  17. 15.
    J. W. Caldwell and M. S. Gordon, Excited states and photochemistry of saturated molecules. Minimal plus Rydberg basis set calculations on the vertical spectra of CH4, C2H6, C3H8, and n-C4H10, Chem. Phys. Lett. 59: 403 (1978).CrossRefGoogle Scholar
  18. 16.
    M. S. Gordon, Excited states and photochemistry of saturated molecules. The 1B1 (1T2) surface in silane, Chem. Phys. Lett. 70: 343 (1980).CrossRefGoogle Scholar
  19. 17.
    M. S. Gordon, Excited states and photochemistry of saturated molecules. Vertical excited states of methylsilane, in preparation.Google Scholar
  20. 18.
    G. Herzberg, “Electronic Spectra of Polyatomic Molecules”, D. Van Nostrand Company, Inc., New York (1967).Google Scholar
  21. 19.
    H. U. Lee and R. Janoschek, Photolysis of methane: Population inverstion in methylene?, Chem. Phys. 39: 271 (1979).CrossRefGoogle Scholar
  22. 20.
    “Selected Values of Chemical Thermodynamic Properties”, NBS Technical Note 270-3, U.S. Government Printing Office, Washington, D.C. (1968).Google Scholar
  23. 21.
    C. W. Bauschlicher and I. Shavitt, Accurate Ab initio calculations on the singlet-triplet separation in methylene, J. Amer. Chem. Soc. 100: 739 (1978).CrossRefGoogle Scholar
  24. 22.
    M. S. Gordon and J. W. Caldwell, Excited states and photochemistry of saturated molecules. VII. Potential energy surfaces in excited singlet states of methane, J. Chem. Phys. 70: 5503 (1979).CrossRefGoogle Scholar
  25. 23.
    M. S. Gordon, Excited states and photochemistry of saturated molecules. Extended basis calculations on the 1B1 (1T2) state of methane, Chem. Phys. Lett. 52: 161 (1977).CrossRefGoogle Scholar
  26. 24.
    M. S. Gordon, unpublished results.Google Scholar
  27. 25.
    M. S. Gordon, Excited states and photochemistry of saturated molecules. Potential energy surfaces in excited singlet states of silane, in preparation.Google Scholar
  28. 26.
    M. S. Gordon, Structure and stability of SiH+ 4, Chem. Phys. Lett. 59: 410 (1978).CrossRefGoogle Scholar
  29. 27.
    R. Runau, S. D. Peyerimhoff, and R. J. Buenker, Ab initio study of the photodissociation of ammonia, J. Mol. Spectry. 68: 253 (1977).CrossRefGoogle Scholar
  30. 28.
    J. A. Horsley and F. Flouquet, The dissociation of NH3 and H2O in excited states, Chem. Phys. Lett. 5: 165 (1970).CrossRefGoogle Scholar
  31. 29.
    W. R. Harshberger, A. Skeberle, and E. N. Lassettre, Generalized oscillator strength of the \(A\tilde{}\rightarrow X\tilde{}\) transition of ammonia, J. Chem. Phys. 54: 3784 (1971).CrossRefGoogle Scholar
  32. 30.
    S. Canuto, Study of the predissociation of NH3 in the 3s A″2 state from Ab initio UHF calculations, J. Phys. B 12: 3149 (1979).CrossRefGoogle Scholar
  33. 31.
    J. Müller and S. Canuto, Theoretical studies of photodissociation and Rydbergization in the first triplet state (3S 3A″2) of ammonia, Chem. Phys. Lett. 70: 236 (1980).CrossRefGoogle Scholar
  34. 32.
    E. M. Evleth, Totally avoided surface crossings in amino radical-radical recombinations, Chem. Phys. Lett. 38: 516 (1976); E. M. Evleth, J. T. Gleghorn, and E. Kassab, Clarification of the concept of avoided crossings in the NH bond rupture surfaces of excited ammonia, Chem. Phys. Lett., submitted.CrossRefGoogle Scholar
  35. 33.
    G. Herzberg, “Spectra of Diatomic Molecules”, D. Van Nostrand, Inc., New York (1950).Google Scholar
  36. 34.
    R. E. Howard, A. D. McLean, and W. A. Lester, Extended basis first-order CI study of the 1A′, 3A″, and \(B\tilde{}A{}'\) 1A′ potential energy surfaces of the O(3P, 1D) + H2(1+ g) reaction, J. Chem. Phys. 71: 2412 (1979).CrossRefGoogle Scholar
  37. 35.
    K. J. Miller, S. R. Mielczarck, and M. Krauss, Energy surface and generalized oscillator strength of the 1A″ Rydberg state of H2O, J. Chem. Phys. 51: 26 (1969).CrossRefGoogle Scholar
  38. 36.
    R. P. Hosteny, A. R. Hinds, A. C. Wahl, and M. Krauss, MCSCF calculations on the lowest triplet state of H2O, Chem. Phys. Lett. 23: 9 (1973).CrossRefGoogle Scholar
  39. 37.
    F. Flouquet and J. A. Horsley, Ab initio study of the potential energy surface of the \(B\tilde{}\) 1A1 excited state of H2O, J. Chem. Phys. 60: 3767 (1974).CrossRefGoogle Scholar
  40. 38.
    C. I. M. Beenakker, F. J. Detteer, H. B. Krop, and G, R. Mohlmann, Dissociative excitation of water by electron impact, Chem. Phys. 6: 445 (1974).CrossRefGoogle Scholar
  41. 39.
    G. A. Chamberlain and J. P. Simons, Polarized photofluorescence excitation spectroscopy: A new technique for the study of molecular photodissociation. Photolysis of H2O in the vacuum ultraviolet, Chem. Phys. Lett. 32: 355 (1975).CrossRefGoogle Scholar
  42. 40.
    R. Roberge and D. R. Salahub, Valence and Rydberg excited states of H2S: An SCF-Xα-SW molecular orbital study, J. Chem. Phys. 70: 1177 (1979).CrossRefGoogle Scholar
  43. 41.
    F. Flouquet, Ab initio study of the potential energy surface of the lowest A1 symmetry excited state of H S, Chem. Phys. 13: 257 (1976).CrossRefGoogle Scholar
  44. 42.
    E. F. Pearson and K. K. Innes, J. Mol. Spectry. 30: 232 (1969).CrossRefGoogle Scholar
  45. 43.
    J. W. Caldwell and M. S. Gordon, Excited states and photochemistry of saturated molecules. Potential energy surfaces in excited singlet states of ethane, in preparation.Google Scholar
  46. 44.
    J. W. Raymonda and W. T. Simpson, Experimental and theoretical study of sigma-bond electronic transitions in alkanes, J. Chem. Phys. 47: 430 (1967).CrossRefGoogle Scholar
  47. B. A. Lombos, P. Sauvageau, and C. Sandorfy, The electronic spectra of n-alkanes, J. Mol. Spectry. 24: 253 (1967).CrossRefGoogle Scholar
  48. 45.
    H. F. Winters, Dissociation of ethane by electron impact, Chem. Phys. 36: 353 (1979).CrossRefGoogle Scholar
  49. 46.
    E. Kassab, J. T. Gleghorn, and E. M. Evleth, unpublished results.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Mark S. Gordon
    • 1
  1. 1.Department of ChemistryNorth Dakota State UniversityFargoUSA

Personalised recommendations