Rate Constant Calculations for the H + H2 and F + H2 Reaction Systems within the Infinite-Order Sudden Approximation

  • V. Khare
  • D. J. Kouri
  • J. Jellinek
  • M. Baer

Abstract

In the past decade, much progress has been made in the quantum mechanical theory of molecular reactive scattering.1-11 It has become possible, at least for very simple, collinearly dominated atom-diatom systems not having too many electrons, for one to carry out calculations of detailed state-to-state reactive cross sections. To date, converged close coupling (CC) results6,7 are available only for the simplest system, H + H2, but studies of isotopic variations of this system are underway. In addition, these rigorous CC formalisms have been combined with new angular momentum decoupling approximations such as the CS12,13 (“coupled states” or “centrifugal sudden”) and IOS14-17 (“infinite-order sudden”) to yield approximate methods which are tractable for systems other than H + H2 (or isotopic variants).18-28 Although still restricted to collinearly dominated reactions, applications have recently been reported for the H + H2 18,19,22-24,26,27 and F + H2 20,25 systems.

Keywords

Reaction Cross Section Close Coupling Final Internal State Molecular Collision Reactive Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Baer and D. J. Kouri, Exact quantum cross sections for a three-dimensional angle-dependent model for three body reactions, Chem. Phys. Lett. 11: 239 (1971).Google Scholar
  2. M. Baer and D. J. Kouri, Theory of reactive scattering. IV. Exact quantum mechanical study of angular-independent and angular-dependent models for three-dimensional rearrangement collisions, J. Chem. Phys. 56: 1758 (1972).CrossRefGoogle Scholar
  3. 2.
    R. P. Saxon and J. C. Light, Quantum calculations of planar reactive H + H2. I. Theory, J. Chem. Phys. 56: 3874 (1972).CrossRefGoogle Scholar
  4. R. P. Saxon and J. C. Light, Quantum calculations of planar reactive H + H2. II. Application, J. Chem. Phys. 56: 3885 (1972).CrossRefGoogle Scholar
  5. A. Altenberger-Siczek and J. C. Light, Quantum calculations of planar reactive H + H2. III. Labeled nuclei and angular distributions, J. Chem. Phys. 61: 4373 (1974).CrossRefGoogle Scholar
  6. 3.
    A. Kuppermann, G. C. Schatz, and M. Baer, Coplanar and collinear quantum mechanical reactive scattering: The importance of virtual vibrational channels in the H + H2 exchange reaction, J. Chem. Phys. 61: 4362 (1974).CrossRefGoogle Scholar
  7. A. Kuppermann and G. C. Schatz, Quantum mechanical reactive scattering: An accurate three-dimensional calculation, J. Chem. Phys. 62: 2502 (1975).CrossRefGoogle Scholar
  8. 4.
    A. Kuppermann, G. C. Schatz, and M. Baer, Quantum mechanical reactive scattering for planar atom-plus-diatom systems. I. Theory, J. Chem. Phys. 65: 4596 (1976).CrossRefGoogle Scholar
  9. G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for planar atom-plus-diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65: 4624 (1976).CrossRefGoogle Scholar
  10. 5.
    G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom-plus-diatom systems. I. Theory, J. Chem. Phys. 65: 4642 (1976).CrossRefGoogle Scholar
  11. 6.
    G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom-plus-diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65: 4668 (1976).CrossRefGoogle Scholar
  12. 7.
    A. B. Elkowitz and R. E. Wyatt, Quantum mechanical reaction cross sections for the three-dimensional hydrogen exchange reaction, J. Chem. Phys. 62: 2504 (1975).CrossRefGoogle Scholar
  13. A. B. Elkowitz and R. E. Wyatt, Three-dimensional natural-coordinate asymmetric-top theory of reactions: Application to H + H2, J. Chem. Phys. 63: 702 (1975).CrossRefGoogle Scholar
  14. S. A. Harms and R. E. Wyatt, Hindered asymmetric top wave functions for three-dimensional H + H2, J. Chem. Phys. 62: 3173 (1975).CrossRefGoogle Scholar
  15. 8.
    G. Wolken and M. Karplus, Theoretical studies of H + H2 reactive scattering, J. Chem. Phys. 60: 361 (1974).Google Scholar
  16. 9.
    M. Baer, A coplanar quantum mechanical study of the exchange reaction HF + H, J. Chem. Phys. 65: 493 (1976).CrossRefGoogle Scholar
  17. 10.
    R. B. Walker, J. C. Light, and A. Altenberger-Siczek, Chemical reaction theory for asymmetric atom-molecule collisions, J. Chem. Phys. 64: 1166 (1976).CrossRefGoogle Scholar
  18. R. B. Walker, E. B. Stechel, and J. C. Light, Accurate H3 dynamics on an accurate H3 potential surface, J. Chem. Phys. 69: 2922 (1978).CrossRefGoogle Scholar
  19. 11.
    D. G. Truhlar and R. E. Wyatt, History of H3 kinetics, Annu. Rev. Phys. Chem. 27: 1 (1976).CrossRefGoogle Scholar
  20. 12.
    P. McGuire and D. J. Kouri, Quantum mechanical approach to molecular collisions. jz-Conserving coupled states approximation, J. Chem. Phys. 60: 2488 (1974).CrossRefGoogle Scholar
  21. 13.
    R. T Pack, Space-fixed vs. body-fixed axes in atom-diatomic molecule scattering: Sudden approximations, J. Chem. Phys. 60: 633 (1974).CrossRefGoogle Scholar
  22. 14.
    T. P. Tsien and R. T Pack, Rotational excitation in molecular collisions: A strong coupling approximation, Chem. Phys. Lett. 6: 54 (1970).CrossRefGoogle Scholar
  23. T. P. Tsien and R. T Pack, Rotational excitation in molecular collisions: A many state test of the strong coupling approximation, Chem. Phys. Lett. 8: 579 (1971).CrossRefGoogle Scholar
  24. T. P. Tsien, G. A. Parker, and R. T Pack, Rotationally inelastic molecular scattering: Computational tests of some simple solutions to the strong coupling problem, J. Chem. Phys. 59: 5373 (1973). See also reference 13.CrossRefGoogle Scholar
  25. 15.
    C. F. Curtiss, Molecular collisions VI. Diagrammatic methods, J. Chem. Phys. 48: 1725 (1968).CrossRefGoogle Scholar
  26. C. F. Curtiss, Molecular collisions VIII, J. Chem. Phys. 49: 1952 (1968).CrossRefGoogle Scholar
  27. C. F. Curtiss, Molecular collisions XII. Generalized phase shifts, J. Chem. Phys. 52: 4832 (1970).CrossRefGoogle Scholar
  28. 16.
    M. A. Brandt and D. G. Truhlar, Importance of long-range forces and short-range forces in electron scattering: Elastic scattering by N2 at 10 and 30 eV, Chem. Phys. Lett. 23: 48 (1973).CrossRefGoogle Scholar
  29. D. Secrest, Theory of angular momentum decoupling approximations for rotational transitions in scattering, J. Chem. Phys. 62: 710 (1975).CrossRefGoogle Scholar
  30. 17.
    D. J. Kouri, Rotational excitation II. Approximation methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 301.CrossRefGoogle Scholar
  31. 18.
    A. B. Elkowitz and R. E. Wyatt, jz-Conserving approximation for the hydrogen exchange reaction, Mol. Phys. 31: 189 (1976).CrossRefGoogle Scholar
  32. 19.
    A. Kuppermann, G. C. Schatz, and J. P. Dwyer, Angular momentum decoupling approximations in the quantum dynamics of reactive systems, Chem. Phys. Lett. 45: 71 (1977).CrossRefGoogle Scholar
  33. 20.
    M. J. Redmon and R. E. Wyatt, Computational methods for reactive scattering, Int. J. Quantum Chem. Symp. 11: 343 (1977).Google Scholar
  34. M. J. Redmon and R. E. Wyatt, Quantal resonance structure in the three-dimensional F + H2 reaction, Chem. Phys. Lett. 63: 209 (1979).CrossRefGoogle Scholar
  35. 21.
    V. Khare, D. J. Kouri, and M. Baer, Infinite-order sudden approximation for reactive scattering. I. Basic l-labeled formulation, J. Chem. Phys. 71: 1188 (1979).CrossRefGoogle Scholar
  36. 22.
    M. Baer, V. Khare, and D. J. Kouri, Integral total reaction cross section calculations with the infinite-order sudden approximation, Chem. Phys. Lett. 68: 378 (1979).CrossRefGoogle Scholar
  37. 23.
    M. Baer, H. R. Mayne, V. Khare, and D. J. Kouri, Integral and differential cross sections for the H2(vi=l) + H reaction. A comparison between average-l labeled infinite-order sudden approximation and classical treatments, Chem. Phys. Lett. 72: 269 (1980).CrossRefGoogle Scholar
  38. 24.
    D. J. Kouri, V. Khare, and M. Baer, Infinite-order sudden approximation for reactive scattering. II. Computational tests for H + H2, J. Chem. Phys., in press.Google Scholar
  39. 25.
    J. Jellinek, M. Baer, V. Khare, and D. J. Kouri, Integral cross sections for the reaction F + H2(vi=0) → HF(vf=0,1,2,3) + H: A quantum mechanical calculation with the infinite-order sudden approximation, Chem. Phys. Lett. 75: 460 (1980).CrossRefGoogle Scholar
  40. 26.
    J. M. Bowman and K. T. Lee, Sudden rotation calculations of the H + H2(v=1,j=0) reaction, Chem. Phys. Lett. 64: 291 (1979).CrossRefGoogle Scholar
  41. 27.
    J. M. Bowman and K. T. Lee, Sudden rotation reactive scattering: Theory and application to three dimensional H + H2, J. Chem. Phys. 72: 5071 (1980).CrossRefGoogle Scholar
  42. 28.
    G.-D. Barg and G. Drolshagen, Reactive and inelastic sudden rotational approximation in the body-fixed frame, Chem. Phys. 47: 209 (1980).CrossRefGoogle Scholar
  43. 29.
    V. Khare, D. J. Kouri, and D. K. Hoffman, On jz-preserving propensities in molecular collisions. I. Quantal coupled states and classical impulsive approximations, J. Chem. Phys., in press.Google Scholar
  44. V. Khare, D. E. Fitz, and D. J. Kouri, Effect on phase and orbital wave parameter choices on CS and IOS degeneracy averaged differential cross sections, J. Chem. Phys. 73: 2802 (1980). See also the discussion and references to research on l choice in reference 17.CrossRefGoogle Scholar
  45. 30.
    V. Khare and D. J. Kouri, Time-reversal symmetry for magnetic transitions in rotationally inelastic scattering. I. Exact theory, J. Chem, Phys. 72: 2007 (1980).Google Scholar
  46. V. Khare and D. J. Kouri, Time-reversal symmetry for magnetic transitions in rotationally inelastic scattering. II. Angular momentum decoupling approximations, J. Chem. Phys. 72: 2017 (1980).CrossRefGoogle Scholar
  47. 31.
    R. D. Levine, “Quantum Mechanics of Molecular Rate Processes”, Oxford University Press, London (1969).Google Scholar
  48. 32.
    Discussions of the activation energy and its temperature dependence may be found in D. G. Truhlar and A. Kuppermann, Exact and approximate quantum mechanical reaction probabilities and rate constants for the collinear H + H2 reaction, J. Chem. Phys. 56: 2232 (1972).CrossRefGoogle Scholar
  49. D. G. Truhlar and J. C. Gray, Interpretation and temperature dependence of the energy of activation for the reactions H + Cl2, H2 + I, H + H2, and isotopic analogs, Chem. Phys. Lett. 57: 93 (1978).CrossRefGoogle Scholar
  50. J. C. Gray, D. G. Truhlar, and M. Baer, Test of trajectory calculations against quantum mechanical state-to-state and thermal collinear reaction rates for H + Cl2 → HC1 + Cl, J. Phys. Chem. 83: 1045 (1979).CrossRefGoogle Scholar
  51. 33.
    R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).CrossRefGoogle Scholar
  52. M. Karplus, R. N. Porter, and R. D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H,H2), J. Chem. Phys. 43: 3259 (1965).CrossRefGoogle Scholar
  53. 34.
    J. N. L. Connor, W. Jakubetz, J. Manz, and J. C. Whitehead, On the information theoretic synthesis of three-dimensional vibrational reaction probabilities from collinear results, Chem. Phys. 39: 395 (1979).CrossRefGoogle Scholar
  54. 35.
    E. B. Gordon, B. I. Ivanov, A. P. Perminov, V. E. Balalaev, A. N. Ponomarev, and V. V. Filatov, Measurement of rate constants for hydrogen atom exchange with vibrationally excited H2, HD, and D2 molecules, Chem. Phys. Lett. 48: 425 (1978).CrossRefGoogle Scholar
  55. 36.
    B. C. Garrett and D. G. Truhlar, Reliable Ab initio calculation of a chemical reaction rate and a kinetic isotope effect: H + H2 and 2H + 2H2, Proc. Natl. Acad. Sci. USA 76: 4755 (1979).CrossRefGoogle Scholar
  56. 37.
    J. T. Muckerman, Applications of classical trajectory techniques to reactive scattering, Theor. Chem.: Advan. Perspectives 6A: 1 (1981). Earlier CT studies by Muekerman, not employing surface M5, are reported in.Google Scholar
  57. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. II. Dependence on the potential energy surface, J. Chem. Phys. 56: 2997 (1972).CrossRefGoogle Scholar
  58. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. III. The hot-atom reactions of 18F with HD, J. Chem. Phys. 57: 3388 (1972).CrossRefGoogle Scholar
  59. 38.
    D. G. Truhlar, Multiple potential energy surfaces for reactions of species in degenerate electronic states, J. Chem. Phys. 56: 3189 (1972).CrossRefGoogle Scholar
  60. D. G. Truhlar, 61: 440(E) (1974).Google Scholar
  61. 39.
    J. T. Muckerman and M. D. Newton, Comment on “Multiple potential energy surfaces for reactions of species in degenerate electronic states” by D. G. Truhlar, J. Chem. Phys. 56: 3191 (1972).CrossRefGoogle Scholar
  62. 40.
    D. S. Perry and J. C. Polanyi, Energy, distribution among reaction products. IX. F + H2, HD, and D2, Chem. Phys. 12: 419 (1976).CrossRefGoogle Scholar
  63. 41.
    D. G. Truhlar, private communication. See also J. C. Tully, Collisions of F(2P1/2) with H2, J. Chem. Phys. 60: 3042 (1974).CrossRefGoogle Scholar
  64. 42.
    J. C. Polanyi and J. L. Schreiber, The reaction F + H2 → HF + H, Faraday Disc. Chem, Soc. 62: 267 (1977).Google Scholar
  65. 43.
    E. Wurzberg and P. L. Houston, to be published.Google Scholar
  66. 44.
    V. I. Igoshin, L. V. Kulatov, and A. I. Nikitin, Determination of the rate constant of the chemical reaction F + H2(D2) → HF(DF) + H(D) from the stimulated emission of the HF(DF) molecules, Sov. J. Quantum. Electron. 3: 306 (1974).CrossRefGoogle Scholar
  67. 45.
    R. F. Heidner, J. F. Bott, C. E. Gardner, and J. E. Melzer, Absolute rate coefficients for F + H2 and F + D2 at T = 295–765 K, J. Chem. Phys. 72: 4815 (1980).CrossRefGoogle Scholar
  68. 46.
    V. P. Bulatov, V. P. Balakhin, and O. M. Sarkisov, Rate constants for the reactions of atomic fluorine with hydrogen and deuterium, Akad. Nauk. SSSR, Div. Chem. Sci, 26: 1600 (1977).Google Scholar
  69. 47.
    R. L. Jaffe and J. B. Anderson, Classical trajectory analysis of the reaction F + H2 → HF + H, J. Chem. Phys. 54: 2224 (1971).CrossRefGoogle Scholar
  70. R. L. Jaffe and J. B. Anderson, Classical trajectory analysis of the reaction F + H2 → HF + H, J. Chem. Phys. 56: 682(E) (1972).CrossRefGoogle Scholar
  71. 48.
    B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved treatment of threshold contributions in variational transition state theory, J. Phys. Chem. 84: 1730 (1980).CrossRefGoogle Scholar
  72. 49.
    D. J. Kouri and M. Baer, Collinear quantum mechanical calculations of the \(He-H_{2}^{+}\) proton transfer reaction, Chem. Phys. Lett. 24: 37 (1974).CrossRefGoogle Scholar
  73. J. T. Adams, Collinear quantum mechanical calculations for the reaction: \(He+H_{2}^{+}\rightarrow HeH^{+}+H\), Chem. Phys. Lett. 33: 275 (1975).CrossRefGoogle Scholar
  74. P. J. Brown and E. F. Hayes, Nonempirical LCAO-MO-SCF study of the energy surface for linear \(HeH_{2}^{+}\), J. Chem. Phys. 55: 922 (1971).CrossRefGoogle Scholar
  75. N. Sathyamurthy, R. Rangarajan, and L. M. Raff, Reactive scattering calculations on a spline fitted Ab initio surface: The \(He+H_{2}^{+}(v-0,1,2)\rightarrow HeH^{+}+H\) reaction, J. Chem. Phys. 64: 4606 (1976).CrossRefGoogle Scholar
  76. N. Sathyamurthy, J. W. Duff, C. Stroud, and L. M. Raff, On the origin of the dynamical differences on the diatomics-in-molecules and spline-fitted Ab initio surfaces for the \(He+H_{2}^{+}\) reaction, J. Chem. Phys. 67: 3563 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • V. Khare
    • 1
  • D. J. Kouri
    • 1
  • J. Jellinek
    • 2
  • M. Baer
    • 3
    • 4
  1. 1.Departments of Chemistry and PhysicsUniversity of Houston Central CampusHoustonUSA
  2. 2.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Department of Theoretical Physics and Applied MathematicsSoreq Nuclear Research CenterYavneIsrael
  4. 4.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations