Overview of Unimolecular Dynamics

  • William L. Hase

Abstract

The chemical literature abounds with questions concerning the dynamics of unimolecular reactions. This has been brought about in part by the rapid development of laser and other experimental technologies which have enhanced the ability to probe unimolecular reactions at a fundamental level. Continual advancements have also been made in developing theoretical methods. Classical mechanical techniques have been applied to complex unimolecular reactions using realistic potential energy surfaces and important strides have been made in developing semiclassical methods applicable to intramolecular dynamics of highly excited polyatomic molecules. This theoretical effort has benefited greatly from the constant improvement in computer technology.

Keywords

Potential Energy Surface Classical Trajectory Excited Molecule Lifetime Distribution Unimolecular Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Rice, Some comments on the dynamics of primary photochemical processes, in: “Excited States”, Vol. 2, E. C. Lim, ed., Academic, New York (1975), p. 111.Google Scholar
  2. 2.
    W. L. Hase, Dynamics of unimolecular reactions, in “Modern Theoretical Chemistry”, Vol. 2, “Dynamics of Molecular Collisions: Part B”, W. H. Miller, ed., Plenum, New York (1976), p. 121.Google Scholar
  3. 3.
    M. Quack and J. Troe, Unimolecular reactions and energy transfer of highly excited molecules Specialist Periodical Reports Chem. Soc., Gas Kinetics and Energy Transfer 2: 175 (1977).CrossRefGoogle Scholar
  4. 4.
    J. D. McDonald, Creation and disposal of vibrational energy in polyatomic molecules, Annu. Rev. Phys. Chem. 30: 29 (1979).CrossRefGoogle Scholar
  5. 5.
    W. J. Chesnavich and M. T. Bowers, Statistical methods in reaction dynamics, in: “Gas Phase Ion Chemistry”, Vol. 1, M. T. Bowers, ed., Academic, New York (1979), p. 119.Google Scholar
  6. 6.
    I. Oref and B. S. Rabinovitch, Do highly excited reactive polyatomic molecules behave ergodically, Acc. Chem. Res. 12: 166 (1979).CrossRefGoogle Scholar
  7. 7.
    B. E. Holmes and D. W. Setser, Energy disposal in chemical reactions, in: “Physical Chemistry of Fast Reactions”, Vol. 2, Plenum, New York (1980), p. 83.Google Scholar
  8. 8.
    J. P. Robinson and K. A. Holbrook, “Unimolecular Reactions”, Wiley Interscience, New York (1972).Google Scholar
  9. 9.
    W. Forst, “Theory of Unimolecular Reactions”, Academic, New York (1973).Google Scholar
  10. 10.
    D. L. Bunker and M. Pattengill, Monte Carlo calculations. VI. A reevaluation of the RRKM theory of unimolecular reaction rates, J. Chem. Phys. 48: 772 (1968).CrossRefGoogle Scholar
  11. 11.
    W. H. Wong and R. A. Marcus, Concept of minimum state density in the activated complex theory of bimolecular reactions, J. Chem. Phys. 55: 5625 (1971).CrossRefGoogle Scholar
  12. 12.
    W. H. Wong, Remarks on the concept of minimum state density in the activated complex theory, Can. J. Chem. 50: 3386 (1972).CrossRefGoogle Scholar
  13. 13.
    M. Quack and J. Troe, Specific rate constants of unimolecular processes II. Adiabatic channel model, Ber. Bunsenges. Phys. Chem. 78: 240 (1974).CrossRefGoogle Scholar
  14. 14.
    W. L. Hase, The criterion of minimum state density in unimolecular rate theory. An application to ethane dissociation, J. Chem. Phys. 64: 2442 (1976).CrossRefGoogle Scholar
  15. 15.
    M. Quack and J. Troe, Unimolecular processes V: Maximum free energy for the high pressure limit of dissociation reactions, Ber. Bunsenges. Phys. Chem. 81: 329 (1977).CrossRefGoogle Scholar
  16. 16.
    B. C. Garrett and D. G. Truhlar, Criterion of minimum state density in the transition state theory of bimolecular reactions, J. Chem. Phys. 70: 1593 (1979).CrossRefGoogle Scholar
  17. 17.
    J. C. Polanyi, Some concepts In reaction dynamics, Acc. Chem. Res. 5: 161 (1971).CrossRefGoogle Scholar
  18. 18.
    D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10: 287 (1971).Google Scholar
  19. 19.
    J. C. Polanyi and J. L. Schreiber, The dynamics of bimolecular reactions, in: “Physical Chemistry: An Advanced Treatise”, Vol. VIA, “Kinetics of Gas Reactions”, W. Jost, ed., Academic, New York (1974), p. 383.Google Scholar
  20. 20.
    T. Valencich and D. L. Bunker, Trajectory studies of hot atom reactions. II. An unrestricted potential for CH5, J. Chem. Phys. 61: 21 (1974).CrossRefGoogle Scholar
  21. 21.
    D. L. Bunker, Simple kinetic models from Arrhenius to the computer, Acc. Chem. Res. 7: 195 (1974).CrossRefGoogle Scholar
  22. 22.
    J. D. Goddard and H. F. Schaefer III, The photodissociation of formaldehyde: Potential energy surface features, J. Chem. Phys. 70: 5117 (1979).CrossRefGoogle Scholar
  23. 23.
    L. T. Redmon, G. D. Purvis III, and R. J. Bartlett, Correlation effects in the isomeric cyanides: HNC ↔ HCN, LiNC ↔ LiCN, and BNC ↔ BCN, J. Chem. Phys. 72: 986 (1980).CrossRefGoogle Scholar
  24. 24.
    L. T. Redmon, G. D. Purvis, and R. J. Bartlett, The unimolecular isomerization of methyl isocyanide to methyl cyanide (acetonitrile), J. Chem. Phys. 69: 5386 (1978).CrossRefGoogle Scholar
  25. 25.
    P. Saxe, Y. Yamaguchi, P. Pulay, and H. F. Schaefer III, Transition state vibrational analysis for the methyl isocyanide rearrangement, CH3NC → CH3CN, J. Amer. Chem. Soc. 102: 3718 (1980).CrossRefGoogle Scholar
  26. 26.
    D. T. Clark, I. W. Scanlon, and J. C. Walton, A note on the transition state of radical addition reactions, Chem. Phys. Lett. 55: 102 (1978).CrossRefGoogle Scholar
  27. 27.
    W. L. Hase, G. Mrowka, R. J. Brudzynski, and C. S. Sloane, An analytic function describing the H + C2H4 ⇄ C2H5 potential energy surface, J. Chem. Phys. 69: 3548 (1978).CrossRefGoogle Scholar
  28. 28.
    S. Kato and K. Morokuma, Potential energy characteristics and energy partitioning in chemical reactions: Ab initio MO study of H2CCH2F → H2CCHF + H reaction, J. Chem. Phys. 72: 206 (1980).CrossRefGoogle Scholar
  29. 29.
    R. E. Howard, A. D. McLean, and W. A. Lester, Jr., Extended basis first-order CI study of the 1A′, 3A″, 1A″, and B 1A′ potential energy surfaces of the O(3P, 1D) + H2(1g +) reaction, J. Chem. Phys. 71: 2412 (1979).CrossRefGoogle Scholar
  30. 30.
    G. F. Adams, G. D. Bent, G. D. Purvis, and R. J. Bartlett, The electronic study of the formyl radical HCO, J. Chem. Phys. 71: 3697 (1979).CrossRefGoogle Scholar
  31. 31.
    M. M. L. Chan and H. F. Schaefer III, Potential energy surface for the Li + HF → LiF + H reaction, J. Chem. Phys. 72: 4376 (1980).CrossRefGoogle Scholar
  32. 32.
    J. N. Murrell, Potential energy surfaces for studying the reactions and molecular dynamics of small polyatomic molecules, Specialist Periodical Reports Chem. Soc., Gas Kinetics and Energy Transfer 3: 200 (1978).CrossRefGoogle Scholar
  33. 33.
    R. Schinke and W. A. Lester, Jr., Trajectory studies of O + H2 reactions on fitted Ab initio surfaces. II. Singlet case, J. Chem. Phys. 72: 3754 (1980).CrossRefGoogle Scholar
  34. 34.
    D. L. Bunker and W. L. Hase, On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular, J. Chem. Phys. 59: 4621 (1973).CrossRefGoogle Scholar
  35. D. L. Bunker and W. L. Hase, On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular, J. Chem. Phys. 69: 4711(E) (1978).Google Scholar
  36. 35.
    E. R. Grant and D. L. Bunker, Dynamical effects in unimolecular decomposition: A classical trajectory study of the dissociation of C2H6, J. Chem. Phys. 68: 628 (1978).CrossRefGoogle Scholar
  37. 36.
    A. F. Wagner, A. C. Wahl, A. M. Karo, and R. Krejci, Classical inelastic scattering in Li + H2: A comparison of different potential energy surfaces, J. Chem. Phys. 69: 3756 (1978).CrossRefGoogle Scholar
  38. 37.
    R. A. Marcus, The theoretical approach, Faraday Disc. Chem. Soc. 55: 9 (1973).CrossRefGoogle Scholar
  39. 38.
    W. H. Miller, Classical-limit quantum mechanics and the theory of molecular collisions, Advan. Chem. Phys. 25: 69 (1974).CrossRefGoogle Scholar
  40. 39.
    W. D. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of bound states in multidimensional systems with Fermi resonance, J. Chem. Phys. 71: 2864 (1979).CrossRefGoogle Scholar
  41. 40.
    R. M. Stratt, N. C. Handy, and W. H. Miller, On the quantum mechanical implications of classical ergodicity, J. Chem. Phys. 71: 3311 (1979).CrossRefGoogle Scholar
  42. 41.
    E. J. Heller, Time-dependent approach to semiclassical dynamics, J. Chem. Phys. 62: 1544 (1975).CrossRefGoogle Scholar
  43. 42.
    E. J. Heller, E. B. Stechel, and M. J. Davis, Molecular spectra, Fermi resonances, and classical motion: Example of CO2, J. Chem. Phys. 71: 4759 (1979).CrossRefGoogle Scholar
  44. 43.
    E. J. Heller, Quantum effects in intramolecular energy transfer, Chem. Phys. Lett. 60: 338 (1979).CrossRefGoogle Scholar
  45. 44.
    K. G. Kay, Numerical study of intramolecular vibrational energy transfer: Quantal, classical, and statistical behavior, J. Chem. Phys. 72: 5955 (1980).CrossRefGoogle Scholar
  46. 45.
    R. N. Porter and L. M. Raff, Classical trajectory methods in molecular collisions, in: “Modern Theoretical Chemistry”, Vol. 2, “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum, New York (1976), p. 1.Google Scholar
  47. 46.
    D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections III: Quasiclassical and semiclassical methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 505.CrossRefGoogle Scholar
  48. 47.
    G. C. Schatz, A quasiclassical trajectory study of collisional excitation in Li+ + CO2, J. Chem. Phys. 72: 3929 (1980).CrossRefGoogle Scholar
  49. 48.
    S. Chapman and D. L. Bunker, An exploratory study of reactant vibrational effects in CH3 + H2 and its isotopic variants, J. Chem. Phys. 62: 2890 (1975).CrossRefGoogle Scholar
  50. 49.
    D. L. Bunker, Monte Carlo calculation of triatomic dissociation rates. I. N2O and O3, J. Chem. Phys. 37: 393 (1962).CrossRefGoogle Scholar
  51. 50.
    W. L. Hase and D. G. Buckowski, Monte Carlo sampling of a micro-canonical ensemble of classical harmonic oscillations, Chem. Phys. Lett. 74: 284 (1980).CrossRefGoogle Scholar
  52. 51.
    R. J. Wolf and W. L. Hase, Trajectory studies of model H-C-C → H + C=C dissociation. I. Random vibrational excitation, J. Chem. Phys. 72: 316 (1980).CrossRefGoogle Scholar
  53. 52.
    D. L. Bunker and S. A. Jayich, Trajectory studies of energy transfer: CH3NC with He, Xe, H2 and N2, Chem. Phys. 13: 129 (1976).CrossRefGoogle Scholar
  54. 53.
    R. C. Baetzold and D. J. Wilson, Classical unimolecular rate theory. II. Effect of the distribution of initial conditions, J. Phys. Chem. 68: 3141 (1964).CrossRefGoogle Scholar
  55. 54.
    W. L. Hase, R. L. Johnson, and J. W. Simons, The decomposition of chemically activated n-butane, isopentane, neohexane, and n-pentane and the correlation of their decomposition rates with radical recombinations rates, Int. J. Chem. Kinet. 4: 1 (1972).CrossRefGoogle Scholar
  56. 55.
    P. J. Marcoux and D. W. Setser, Vibrational energy transfer probabilities of highly vibrationally excited 1,1-trifluoro-ethane, J. Phys. Chem. 82: 97 (1978).CrossRefGoogle Scholar
  57. 56.
    B. E. Holmes and D. W. Setser, Energy disposal by the four-centered unimolecular hydrogen chloride elimination reaction, J. Phys. Chem. 82: 2461 (1978).CrossRefGoogle Scholar
  58. 57.
    Y. T. Lee, Crossed molecular beam studies and dynamics of decomposition of chemically activated radicals, Ber. Bunsenges. Phys. Chem. 78: 135 (1974).Google Scholar
  59. 58.
    G. M. McClelland and D. R. Herschbach, Symmetry properties of angular correlations for molecular collision complexes, J. Phys. Chem. 83: 1445 (1979).CrossRefGoogle Scholar
  60. 59.
    P. N. Clough, J. C. Polanyi, and R. T. Taguchi, Vibrational energy distribution in HF formed by elimination from activated CH3CF3 and CH2CF2, Can. J. Chem. 48: 2919 (1970).CrossRefGoogle Scholar
  61. 60.
    E. Cuellar, J. H. Parker, and G. C. Pimentel, Rotational chemical lasers from hydrogen fluoride elimination reactions, J. Chem. Phys. 61: 422 (1974).CrossRefGoogle Scholar
  62. 61.
    J. F. Durana and J. D. McDonald, Infrared chemiluminescence studies of chlorine substitution reactions with brominated unsaturated hydrocarbons, J. Chem. Phys. 64: 2518 (1976).CrossRefGoogle Scholar
  63. 62.
    K. Evans, D. Heller, S. A. Rice, and R. Scheps, Primary photochemical and photophysical processes in chloro-and bromo-acetylene, J. Chem. Soc. Faraday Trans. II 69: 856 (1973).CrossRefGoogle Scholar
  64. 63.
    J. C. Hsieh, C.-S. Huang, and E. C. Lim, Radiationless singlet deactivation in isolated large molecules. I. Naphthalene, naphthol, and naphthylamine, J. Chem. Phys. 60: 4345 (1974).CrossRefGoogle Scholar
  65. 64.
    C. A. Thayer, A. V. Pocius, and Y. T. Yardley, Radiationless decay in propynal: Dependence upon vibrational state, J. Chem. Phys. 62: 3712 (1975).CrossRefGoogle Scholar
  66. 65.
    P. A. Beyer, P. F. Zittel, and W. C. Lineberger, Relaxation in the 1Au state of glyoxal. I. Collision free lifetimes of single vibrational levels, J. Chem. Phys. 62: 4016 (1975).CrossRefGoogle Scholar
  67. 66.
    E. K. C. Lee, Laser photochemistry of selected vibronic and rotational states, Acc. Chem. Res. 10: 319 (1977).CrossRefGoogle Scholar
  68. 67.
    Y. Hirata and E. C. Lim, Intramolecular vibrational energy redistribution as revealed by excitation energy dependence of nonradiative decay rate: T1 → S0 intersystem crossing in acetophenone and 1-indanone, Chem. Phys. Lett. 71: 167 (1980).CrossRefGoogle Scholar
  69. 68.
    H. Hippler, K. Luther, J. Troe, and R. Walch, Ultraviolet-laser study of specific rate constants for unimolecular isomerization of substituted cycloheptatrienes, J. Chem. Phys. 68: 323 (1978).CrossRefGoogle Scholar
  70. 69.
    R. Naaman, D. M. Lubman, and R. N. Zare, Vibrational energy redistribution in glyoxal following internal conversion, J. Chem. Phys. 71: 4192 (1979).CrossRefGoogle Scholar
  71. 70.
    W. Braun and W. Tsang, Mechanism of alkyl halide photolysis by a pulsed CO2 TEA laser, Chem. Phys. Lett. 44: 354 (1976).CrossRefGoogle Scholar
  72. 71.
    D. M. Brenner, Infrared multiphoton-induced chemistry of ethyl vinyl ether: Dependence of branching ratio on laser pulse duration, Chem. Phys. Lett. 57: 357 (1978).CrossRefGoogle Scholar
  73. 72.
    R. B. Hall and A. Kaldor, Multiple IR photon laser induced reactions of cyclopropane, J. Chem. Phys. 70: 4027 (1979).CrossRefGoogle Scholar
  74. 73.
    S. E. Bialkowski and W. A. Guillory, The infrared multiphoton photochemistry of methanol, J. Chem. Phys. 67: 2061 (1977).CrossRefGoogle Scholar
  75. 74.
    P. A. Schulz, Aa. S. Sudbo, D. J. Krajnovich, H. S. Kwok, Y. R. Shen, and Y. T. Lee, Multiphoton dissociation of polyatomic molecules, Annu. Rev. Phys. Chem. 30: 379 (1979).CrossRefGoogle Scholar
  76. 75.
    J. C. Stephenson, S. E. Bialkowski, and D. S. King, Energy partitioning in CO2 laser induced multiphoton dissociations: Energy of X CF2 and X CFCI from CF2CFC1, J. Chem. Phys. 72: 1161 (1980).CrossRefGoogle Scholar
  77. 76.
    R. G. Bray and M. J. Berry, Intramolecular rate processes in highly vibrationally excited benzene, J. Chem. Phys. 71: 4909 (1979).CrossRefGoogle Scholar
  78. 77.
    K. V. Reddy and M. J. Berry, Intracavity CW dye laser photo-activation of unimolecular reactants: Isomerization of state-selected methyl isocyanide, Chem. Phys. Lett. 52: 111 (1977).CrossRefGoogle Scholar
  79. 78.
    K. V. Reddy and M. J. Berry, A nonstatistical unimolecular chemical reaction: Isomerization of state-selected allyl isocyanide, Chem. Phys. Lett. 66: 223 (1979).CrossRefGoogle Scholar
  80. 79.
    D. L. Bunker, “Theory of Elementary Gas Reaction Rates” Pergamon Press, New York (1966).Google Scholar
  81. 80.
    D. L. Bunker, Monte Carlo calculations. IV. Further studies of unimolecular dissociation, J. Chem. Phys. 40: 1946 (1964).CrossRefGoogle Scholar
  82. 81.
    E. Thiele and D. J. Wilson, Anharmonicity in unimolecular reactions, J. Chem. Phys, 35: 1256 (1961).CrossRefGoogle Scholar
  83. 82.
    H. C. Hung and D. J. Wilson, Anharmonic effects in unimolecular rate theory. Dynamics of a rotating anharmonic triatomic molecule, J. Chem. Phys. 38: 828 (1963).CrossRefGoogle Scholar
  84. 83.
    R. J. Harter, E. B. Alterman, and D. J. Wilson, Anharmonic effects in unimolecular rate theory. Vibrations and collisions of simple polyatomic systems, J. Chem. Phys. 40: 2137 (1964).CrossRefGoogle Scholar
  85. 84.
    R. G. Baetzold and D. J. Wilson, Classical unimolecular rate theory. III. Effect of initial conditions on lifetime distributions, J. Chem. Phys. 43: 4299 (1965).CrossRefGoogle Scholar
  86. 85.
    H. C. Hung, Rotational-vibrational energy transfer, Dynamics of a rotating anharmonic four-atom molecule, J. Chem. Phys. 57: 5202 (1972).CrossRefGoogle Scholar
  87. 86.
    H. H. Harris and D. L. Bunker, Methyl isocyanide is probably a non-RRKM molecule, Chem. Phys. Lett. 11: 433 (1971).CrossRefGoogle Scholar
  88. 87.
    P. Brumer and M. Karplus, Collision complex dynamics in alkali halide exchange reactions, Faraday Disc. Chem. Soc. 55: 80 (1973).CrossRefGoogle Scholar
  89. 88.
    K. S. Sorbie and J. N. Murrell, Theoretical study of the O(1D) + H2(1+ g) reactive quenching process. Mol. Phys. 31: 905 (1976).CrossRefGoogle Scholar
  90. 89.
    J. D. McDonald and R. A. Marcus, Classical trajectory study of internal energy distributions in unimolecular processes, J. Chem. Phys. 65: 2180 (1976).CrossRefGoogle Scholar
  91. 90.
    D. W. Noid, M. L. Koszykowski, R. A. Marcus, and J. D. McDonald, Classical trajectory study of infrared multiphoton photodissociation, Chem. Phys. Lett. 51: 540 (1977).CrossRefGoogle Scholar
  92. 91.
    W. L. Hase and D.-F. Feng, Classical trajectory study of the unimolecular decomposition of H-C=C1, H-C≡C-H, and C1-C≡C1, J. Chem. Phys. 61: 4690 (1974).CrossRefGoogle Scholar
  93. 92.
    W. L. Hase and D.-F. Feng, Trajectory studies of unimolecular processes. II. Dynamics of cloroacetylene dissociations, J. Chem. Phys. 64: 651 (1976).CrossRefGoogle Scholar
  94. 93.
    C. S. Sloane and W. L. Hase, On the dynamics of state selected unimolecular reactions: Chloroacetylene dissociation and pre-dissociation, J. Chem. Phys. 66: 1523 (1977).CrossRefGoogle Scholar
  95. 94.
    W. L. Hase, On the relationship between unimolecular lifetime and relative translational energy distributions, Chem. Phys. Lett. 67: 263 (1979).CrossRefGoogle Scholar
  96. 95.
    X. Chapuisat and Y. Jean, Dynamical study of mechanistic details in organic reactions II. An overall study of isomerizations of cyclopropane, J. Amer. Chem. Soc. 97: 6325 (1975).CrossRefGoogle Scholar
  97. 96.
    D. E. Carter, Translational energies from ionic fragmentation, J. Chem. Phys. 65: 2584 (1976).CrossRefGoogle Scholar
  98. 97.
    M. Sizun and S. Goursaud, A classical trajectory study of the fragmentation of CO2 2∑+ g, J. Chem. Phys. 71: 4042 (1979).CrossRefGoogle Scholar
  99. 98.
    J. Santamaria, D. L. Bunter, and E. R. Grant, Dynamical effects of mode specific excitation in unimolecular decomposition: A trajectory study of C2H6, Chem. Phys. Lett. 56: 170 (1978).CrossRefGoogle Scholar
  100. 99.
    J. W. Duff and P. Brumer, Exponentiating trajectories and statistical behavior: Three dimensional K + NaCl and H + ICl, J. Chem. Phys. 71: 2693 (1979).CrossRefGoogle Scholar
  101. 100.
    D. L. Bunker, K. R. Wright, W. L. Hase, and F. A. Houle, Exit-channel coupling effects in the unimolecular decomposition of triatomics, J. Phys. Chem. 83: 933 (1979).CrossRefGoogle Scholar
  102. 101.
    W. L. Hase, R. J. Wolf, and C. S. Sloane, Trajectory studies of the molecular dynamics of ethyl radical decomposition, J. Chem. Phys. 71: 2911 (1979).CrossRefGoogle Scholar
  103. 102.
    D. Poppe, Multiphoton absorption of SF5: A classical trajectory study, Chem. Phys. 45: 371 (1980).CrossRefGoogle Scholar
  104. 103.
    J. W. Brady, J. D. Doll, and D. L. Thompson, Cluster dynamics: A classical trajectory study of A + An ⇄ A* n+1, J. Chem. Phys. 71: 2467 (1979).CrossRefGoogle Scholar
  105. 104.
    S. B. Woodruff and D. L. Thompson, A quasiclassical study of vibrational predissociation of van der Waals molecules: Collinear He...I2(B3π), J. Chem. Phys. 71: 376 (1979).CrossRefGoogle Scholar
  106. 105.
    J. D. Rynbrandt and B. S. Rabinovitch, Intramolecular energy relaxation. Nonrandom decomposition of hexafluorobicyclopropyl, J. Phys. Chem. 75: 2164 (1971).CrossRefGoogle Scholar
  107. 106.
    J. F. Meagher, K. J. Chao, J. R. Barker, and B. S. Rabinovitch, Intramolecular vibrational energy relaxation. Decomposition of a series of chemically activated fluoro alkyl cyclopropanes, J. Phys. Chem. 78: 2535 (1974).CrossRefGoogle Scholar
  108. 107.
    A.-N. Ko and B. S. Rabinovitch, Initial state selection and intramolecular vibrational relaxation in reacting polyatomic molecules. Neopentylcyclobutane precursor, Chem. Phys. 30: 361 (1978).CrossRefGoogle Scholar
  109. 108.
    I. Oref, D. Schuetzle, and B. S. Rabinovitch, Unimolecular decomposition and intramolecular energy relaxation in the suprahigh-pressure region, J. Chem. Phys. 54: 575 (1971).CrossRefGoogle Scholar
  110. 109.
    E. Thiele, M. F. Goodman, and J. Stone, Can lasers be used to break chemical bonds selectively?, Opt. Eng. 19: 10 (1980).CrossRefGoogle Scholar
  111. 110.
    W. Forst, Methods for calculating energy-level densities, Chem. Rev. 71: 339 (1971).CrossRefGoogle Scholar
  112. 111.
    J. D. Doll, Anharmonic corrections in unimolecular rate theory, Chem. Phys. Lett. 72: 139 (1980).CrossRefGoogle Scholar
  113. 112.
    P. J. Nagy and W. L. Hase, Intramolecular vibrational energy relaxation in benzene, Chem. Phys. Lett. 54: 73 (1978).CrossRefGoogle Scholar
  114. P. J. Nagy and W. L. Hase, Intramolecular vibrational energy relaxation in benzene, Chem. Phys. Lett. 58: 482(E) (1978).Google Scholar
  115. 113.
    R. J. Wolf and W. L. Hase, Quasiperiodic trajectories for a multidimensional anharmonic classical Hamiltonian excited above the unimolecular threshold, J. Chem. Phys. 73: 3779 (1980).CrossRefGoogle Scholar
  116. 114.
    S. Chapman, B. C. Garrett, and W. H. Miller, Semiclassical eigenvalues for nonseparable systems: Nonperturbative solution of the Hamiltonian-Jacobi equation in action-angle variables, J. Chem. Phys. 64: 502 (1976).CrossRefGoogle Scholar
  117. 115.
    G. C. Schatz and T. Mulloney, Classical perturbation theory of good action-angle variables. Applications to semiclassical eigenvalues and to collisional energy transfer in polyatomic molecules, J. Phys. Chem. 83: 989 (1979).CrossRefGoogle Scholar
  118. 116.
    R. T. Swimm and J. B. Delos, Semiclassical calculations of vibrational energy levels for nonseparable systems using the Birkhoff-Gustavson normal form, J. Chem. Phys. 71: 1706 (1979).CrossRefGoogle Scholar
  119. 117.
    D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of eigenvalues for a three-dimensional system, J. Chem. Phys. 73: 391 (1980).CrossRefGoogle Scholar
  120. 118.
    R. L. Swofford, M. E. Long, and A. C. Albrecht, C-H vibrational states of benzene, naphthalene, and anthracene in the visible region by thermal lensing spectroscopy and the local mode model, J. Chem. Phys. 65: 179 (1976).CrossRefGoogle Scholar
  121. 119.
    B. R. Henry, Use of local modes in the description of highly vibrationally excited molecules, Acc. Chem. Res. 10: 207 (1977).CrossRefGoogle Scholar
  122. 120.
    R. T. Lawton and M. S. Child, Local mode vibrations of water, Mol. Phys. 37: 1799 (1979).CrossRefGoogle Scholar
  123. 121.
    D. P. Heller and S. Mukamel, Theory of vibrational overtone line shapes of polyatomic molecules, J. Chem. Phys. 70: 463 (1979).CrossRefGoogle Scholar
  124. 122.
    E. J. Heller and W. M. Gelbart, Normal mode spectra in pure local mode molecules, J. Chem. Phys. 73: 626 (1980).CrossRefGoogle Scholar
  125. 123.
    T. F. Deutsch and S. R. J. Brueck, ν3 mode absorption behavior of CO2 laser excited SF6, J. Chem. Phys. 70: 2063 (1979).CrossRefGoogle Scholar
  126. 124.
    J. W. Perry and A. H. Zewail, Observation of high-energy vibrational overtones of molecules in solids: Local modes and intramolecular relaxations, J. Chem. Phys. 70: 582 (1979).CrossRefGoogle Scholar
  127. 125.
    R. J. Wolf and W. L. Hase, Importance of angular momentum constraints in the product energy partitioning of model H-C-C → H + C=C dissociation, J. Chem. Phys. 73: 3010 (1980).CrossRefGoogle Scholar
  128. 126.
    J. L. Franklin, Energy distribution in the unimolecular decomposition of ions, in: “Gas Phase Ion Chemistry”, Vol. 1, M. T. Bowers, ed., Academic, New York (1979), p. 273.Google Scholar
  129. 127.
    E. Thiele, M. F. Goodman, and J. Stone, Restricted intramolecular vibrational relaxation in polyatomics and laser selective effects, Chem. Phys. Lett. 69: 18 (1980).CrossRefGoogle Scholar
  130. 128.
    J. W. Duff and P. Brumer, Exponentiating trajectories and statistical behavior in collinear atom-diatom collisions, J. Chem. Phys. 67: 4898 (1977).CrossRefGoogle Scholar
  131. 129.
    K. D. Hänsel, The stability of molecular motion and intramolecular energy transfer, J. Chem. Phys. 70: 1830 (1979).CrossRefGoogle Scholar
  132. 130.
    C. Cerjan and W. P. Reinhardt, Critical point analysis of instabilities in Hamiltonian systems: Classical mechanics of stochastic intramolecular energy transfer, J. Chem. Phys. 71: 1819 (1979).CrossRefGoogle Scholar
  133. 131.
    J. W. Duff and D. G. Truhlar, Effect of curvature of the reaction path on dynamic effects in endothermic chemical reactions and product energies in exothermic reactions, J. Chem. Phys. 62: 2477 (1975).CrossRefGoogle Scholar
  134. 132.
    D. G. Truhlar and D. A. Dixon, Direct-mode chemical reactions: Classical theories, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 595.CrossRefGoogle Scholar
  135. 133.
    D. A. Dixon and D. R. Herschbach, Energy transfer processes involving van der Waals bonds, Ber. Bunsenges. Phys. Chem. 81: 145 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • William L. Hase
    • 1
  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations