Active Control of the Pulmonary Circulation

  • Gwenda R. Barer
Part of the Ettore Majorana International Science Series book series (EMISS, volume 3)

Abstract

Chemical and nervous mechanisms influence the pulmonary circulation. Differences from the systemic circulation are related to the prime function of the lung for gas exchange and the fact that it has to transmit the whole cardiac output from right to left ventricle, For efficient gas exchange there must be matching of ventilation (V̇) and blood flow (Q̇) in individual lung units. This regulation of V̇/Q̇ ratios is achieved to some extent by changing O2 and CO2 tensions. There is, however, controversy as to the importance and efficiency of these mechanisms. Pulmonary vessels possess motor nerves which have been shown to constrict, dilate or stiffen the vessels in animal experiments. Yet in man we have no proof of any situation in which nerves function, nor any evidence of nervous tone. In the systemic circulation blood flow is switched from one organ to another according to need through nervous activity. There is no evidence for a comparable mechanism in the lung, which is uniform in function. Neither, so far as we know, is the pulmonary circulation regulated by feedback reflexes from its sensory receptors in the way that the systemic circulation is regulated by baro and chemoreceptors.

Keywords

Pulmonary Artery Pulmonary Vascular Resistance Carotid Body Pulmonary Circulation Pulmonary Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A. S., Gumming, C., Horsfield, K. and Prowse, K., 1970, Regional hypoxia and distribution of blood flow, Scand. J. resp. Dis., 51:33–36.Google Scholar
  2. Alexander, J. M., Nyby, M. D. and Jasberg, K. A., 1976, Effect of angiotensin on hypoxic pulmonary vasoconstriction in isolated dog lung, J. appl. Physiol., 41:84–88,PubMedGoogle Scholar
  3. Austen, K F. and Orange, R. P., 1975, Bronchial asthma: Ihe possible role of the chemical mediators of immediate hypersensitivity in the pathogenesis of subacute and chronic disease, Am. Rev. resp. Dis., 112:423–436.PubMedGoogle Scholar
  4. Bakhle, Y. S. and Vane, J, R., 1977, Metabolic functions of the lung, in: “Lung biology in health and disease”, C. Lenfant, ed., Marcel Dekker Inc., New York and Basel.Google Scholar
  5. Barer, G. R., 1976, The physiology of the pulmonary circulation and methods of study, Pharmac. Ther. B., 2:247–273.Google Scholar
  6. Barer, G. R., Emery, C. J., Mohammed, F. H. and Mungall, I. P. F., 1978a, H and H2 histamine actions on lung vessels: their relevance to hypoxic vasoconstriction, Q. J. exp. Physiol., 63:157–1690PubMedGoogle Scholar
  7. Barer, G. R., Howard, P. and McCurrie, J. R., 1967, The effect of carbon dioxide and changes in blood pH on pulmonary vascular resistance in cats, Clin. Sci., 32:361–376.PubMedGoogle Scholar
  8. Barer, G. R., Howard, P., McCurrie, J. R. and Shaw, J. W., 1969, Changes in the pulmonary circulation after bronchial occlusion in anaesthetised dogs and cats, Circulation Res., 25:747–764.PubMedCrossRefGoogle Scholar
  9. Barer, G. R., Howard, P. and Shaw, J. W., 1970, Stimulus-response curves of the pulmonary vascular bed to hypoxia and hyper-capnia, J. Riysiol., 211:139–155.Google Scholar
  10. Barer, G. R., McCurrie, J. R. and Shaw, J. W., 1971, Effect of changes in blood pH on the vascular resistance of the normal and hypoxic cat lung, Cardiovasc. Res., 5:490–497.PubMedCrossRefGoogle Scholar
  11. Barer, G. R., Mohammed, F. H, and Suggett, A. J., 1977, Angiotensin, hypoxia, verapamil and pulmonary vessels, J. Riysiol., 270:43–44P.Google Scholar
  12. Barer, G. R., Mohammed, F., Suggett, A. J. and Twelves, C., 1978b, Hypoxic pulmonary vasoconstriction in the ferret, J. Physiol., 281:40–41 P.Google Scholar
  13. Barer, G. R. and Shaw, J. W., 1971, Pulmonary vasodilator and vasoconstrictor actions of carbon dioxide, J. Riysiol., 213: 633–645.Google Scholar
  14. Benumof, J. L. and Wahrenbrock, E. A, 1975, Blunted hypoxic vasoconstriction by increased lung vascular pressures, J. appl. Fhysiol., 38:846–850.Google Scholar
  15. Bergofsky, E. H., 1969, in: “The pulmonary circulation and interstitial space”, A. P. Fishman and H. H. Hecht, eds., University of Chicago Press, Chicago and Basel,Google Scholar
  16. Bergofsky, E. H. and Holtzman, S., 1967, A study of the mechanism involved in the pulmonary arterial response to hypoxia, Circulation Res., 20:506–519.PubMedCrossRefGoogle Scholar
  17. Bergofsky, E. H., Lehr, D. E. and Fishman, A. P., 1962, The effect of changes in hydrogen ion concentration on the pulmonary circulation, J. clin. Invest., 41:1492–1502.PubMedCrossRefGoogle Scholar
  18. Berkov, S., 1974, Hypoxic pulmonary vasoconstriction in the rat. The necessary role of angiotensin II, Cireulation Res., 35:256–261.CrossRefGoogle Scholar
  19. Bohr, D. R., 1977, Ine pulmonary hypoxic response — state of the field, Chest, 71 Supplement: 244–246.PubMedGoogle Scholar
  20. Brody, J. S. and Stemmler, E. J., 1968, Differential reactivity in the pulmonary circulation, J. clin. Invest., 47:800–808.PubMedCrossRefGoogle Scholar
  21. Chand, N. and Eyre, P., 1978, Spasmolytic action of histamine in airway smooth muscle, Agents and Action, 8:191–198.CrossRefGoogle Scholar
  22. Colebatch, H. J. H., Dawes, G. S., Goodwin, J. W. and Nadeau, R. A., 1965, The nervous control of the circulation in the fetal and newly expanded lungs of the lamb, J. Physiol., 178: 544–562.PubMedGoogle Scholar
  23. Coleridge, J. C. G., Kidd, C. and Sharp, J. A., 1961, The distribution connections and histology of baroreceptors in the pulmonary artery with some observations on the innervation of the ductus arteriosus, J. Physiol., 156:591–602.PubMedGoogle Scholar
  24. Daly, I. de B., and Hebb, C., 1966, “Pulmonary and bronchial vascular systems”, Arnold, London.Google Scholar
  25. Dawes, G. S., 1968, “Petal and neonatal physiology”, Yearbook Medical Publishers, Chicago.Google Scholar
  26. Dawes, G. S., 1969, in: “The pulmonary circulation and interstitial space”, A. P. Fishman and H. H. Hecht, eds., University of Chicago Press, Chicago and London.Google Scholar
  27. Durand, J., Ladurie, M. L. and Ranson-Bitker, B., 1970, Pulmonary circulation, in: “Progress in respiration research”, J. Widimsky and S. Daum, eds., Karger, Basel, Munchen, Paris, New York.Google Scholar
  28. Emery, C. J., Bee, D. and Barer, G. R., 1979, Mechanical properties and reactivity of the rat pulmonary circulation in chronic hypoxia. A possible model of human hypoxic disease. Proc. Pulmonary Circulation III, Prague, Bull. eur. Physio-path. resp. (in press).Google Scholar
  29. Emery, C. J., Sloan, P. J. M., Mohammed, P. H. and Barer, G. R., 1977, The action of hypercapnia during hypoxia on pulmonary vessels, Bull. eur. Fhysiopath. resp., 13:763–776.Google Scholar
  30. Even, P., Duroux, P., Caubarrere, I., Ruff, P., Butez, J. and Bronet, G., 1972, Respiratory effects induced by pulmonary artery occlusion, Bull. Fhysiopath. resp., 8:467–473.Google Scholar
  31. Fishman, A. P., 1976, Hypoxia on the pulmonary circulation. How and where it acts, Circulation Res., 38:221–231.PubMedCrossRefGoogle Scholar
  32. Glazier, J. B. and Murray, J. P., 1971, Sites of pulmonary vasomotor activity in the dog during alveolar hypoxia and serotonin and histamine infusions, J. clin. Invest., 50: 2550–2558.PubMedCrossRefGoogle Scholar
  33. Grant, B. J. B., Davies, E. E., Jones, H. A. and Hughes, J. M. B., 1976, Local regulation of pulmonary blood flow and ventilation-perfasion ratios in Coatimundi, J. appl. Physiol., 40:216–228.PubMedGoogle Scholar
  34. Grodins, F., 1967, Some simple principles and complex realities of cardiopulmonary control during exercise, Circulation Res., Supplement 20 & 21:1.171–1.178.Google Scholar
  35. Gryglewski, R. J., Korbut, R. and Ocetkiewicz, A., 1978, Generation of prostacyclin by lungs in vivo and its release into the arterial circulation, Nature, 273:765–767.PubMedCrossRefGoogle Scholar
  36. Harris, P. and Heath, D., 1977, “The human pulmonary circulation”, 2nd Edition, Churchill Livingstone, Edinburgh, London and New York.Google Scholar
  37. Hauge, A., 1968, Role of histamine in hypoxic pulmonary hypertension in the rat. I. Blockade or potentiation of endogenous amines, kinins and ATP, Circulation Res, 22:371–383.PubMedCrossRefGoogle Scholar
  38. Hauge, A., 1969, Hypoxia and pulmonary vascular resistance. The relative effects of pulmonary arterial and alveolar PO2. Acta. physiol. scand., 76:121–130.PubMedCrossRefGoogle Scholar
  39. Hebb, C., 1969, in: “The pulmonary circulation and interstitial space”, A. P. Fishman and H. H. Hecht, eds., University of Chicago Press, Chicago and London.Google Scholar
  40. Howard, P., Barer, G. R., Thompson, B., Warren, P. M., Abbot, C. J. and Mongall, I. P. F., 1975t Factors causing and reversing vasoconstriction in unventilated lung, Resp. Physiol., 24: 325–345.CrossRefGoogle Scholar
  41. Hughes, J. M. B., Glazier, J. B., Maloney, J. E. and West, J. B., 1968, Effects of extra-alveolar vessels on the distribution of blood flow in the dog lung, J. appl. Riysiol, 25:701–712.Google Scholar
  42. Hyman, A. L., Spannhake, E. W. and Kadowitz, P. J., 1977, Prosta glandins and the lung, Am. Rev. resp. Dis., 117:111–136.Google Scholar
  43. Ingram, R. H., Szidon, J. P. & Fishman, A. P., 1970, Response of the main pulmonary artery of dogs to neuronally released versus blood borne norepinephrine, Circulation Res., 26: 249–262.PubMedCrossRefGoogle Scholar
  44. Junod, A. F., 1977, Metabolism of vasoactive agents in the lung, Am. Rev. resp. Dis., Comroe Symposium, 115:51–57.PubMedGoogle Scholar
  45. Kadowitz, P. J., Knight, D. S., Hibbs, R. G., Ellison, J. P., Joiner, P. P., Brody, M. J. and Hyman, A. L., 1976, In fluence of 5 and 6 hydroxydopamine on adrenergic transmission and nerve terminal morphology in the canine pulmonary vascular bed, Circulation Res., 39:191–199.PubMedCrossRefGoogle Scholar
  46. Kay, J. M., Waymire, J. C. and Grover, R. F., 1974, Lung mast cell hyperplasia and pulmonary histamine forming capacity in hypoxic rats, Am. J. Riysiol, 226:178–184.Google Scholar
  47. Lahiri, S. and Delaney, R. G., 1975, Stimulus interaction in the responses of the carotid, body chemoreceptor single afferent fibres, Resp. Riysiol., 24: 249–266.CrossRefGoogle Scholar
  48. Lauweryns, J. M, and Cokelaere, 1973, Hypoxia-sensitive neuroepithelial bodies. Intrapulmonary secretory neuroreceptors modulated by the C.N. S., Z. Zeilforsch. mikrosk. Anat., 145:521–540.CrossRefGoogle Scholar
  49. Ledsome, J. R., 1977, Reflex role of pulmonary arterial barorecep-tors, Am. Rev. resp. Dis., Comroe Symposium, 115:245–250.PubMedGoogle Scholar
  50. Lloyd, T. C. and Schneider, A. J. L., 1970, Reflex pulmonary vascular responses to distension of the lungs and left heart, J. appl. Physiol., 29:318–322.PubMedGoogle Scholar
  51. Lockhart, A., Zeller, M., Mensch-Dechene, J., Antezano, G., Paz-Zamora, M., Vargas, E. and Courdet, J., 1976, Pressure-flow-volume relationships in pulmonary circulation of normal Highlanders, J. appl. Physiol., 41:449–456.PubMedGoogle Scholar
  52. McMurtry, I. F., Hiser, W. W., Reeves, J. T. and Grover, R. F., 1975, Dissociation of hypoxia and angiotensin II-induced pulmonary vasoconstriction by saralasin, Fed. Proc., 34: 438.Google Scholar
  53. McMurtry, I. F., Davidson, I. B., Reeves, J. T. and Grover, R. F., 1976, Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs, Circulation Res., 38:99–104.PubMedCrossRefGoogle Scholar
  54. McMurtry, I. F., Petrun, M. D. and Reeves, J. T., 1978, Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia, Am. J. Physiol., H105–H109.Google Scholar
  55. Malik, A. B., 1977, Pulmonary vascular response to increase in intracranial pressure:role of sympathetic mechanisms, J. appl Physiol. Respirat. Environ. Exercise Physiol., 42:335–343.Google Scholar
  56. Mentzner, R. M., Rubio, R. and Berne, R. M., 1975, Release of adenosine by hypoxic canine lung tissue and its possible role in the pulmonary circulation, Am. J. Physiol, 229:1625–1631.Google Scholar
  57. Mills, E. and Jobsis, F. F., 1972, Mitochondrial respiratory chain and chemoreceptor response to changes in oxygen tension, J. Neurophysiol., 35:405–428.PubMedGoogle Scholar
  58. Mungall, I. P. F., 1976, Hypoxia and lung mast cells: influence of disodium cromoglycate, Thorax, 31:94–100.PubMedCrossRefGoogle Scholar
  59. Naeye, R. L., 1961, Arterial changes during the neonatal period, Archs. Path., 71:121–128.Google Scholar
  60. Nison, K. H. and Hauge, A., 1968, Effects of temperature changes on the pressor response to acute hypoxia in isolated rat lungs, Acta. physiol. scand., 73: 111–120.CrossRefGoogle Scholar
  61. Piene, H., 1976a, The influence of pulmonary blood flow rate on vascular input impedance and hydraulic power in the sympathetically and noradrenaline stimulated cat lung, Acta physiol. scand., 98:44–53.PubMedCrossRefGoogle Scholar
  62. Piene, H., 1976b, Improved left ventricular performance by the transmission of pulse waves through the pulmonary vascular bed, Acta. physiol. scand. 98:450–456.PubMedCrossRefGoogle Scholar
  63. Piene, H. and Hauge, A., 1976a, Reduction of pulsatile hydraulic power in the pulmonary circulation caused by moderate vasoconstriction, Cardiovasc. Res., 10:503–516.PubMedCrossRefGoogle Scholar
  64. Piene, H, and Hauge, A., 1976b, Influence of moderate vasoconstriction on the wave reflection properties of the pulmonary arterial bed, Acta, physiol. scand., 98:37–43.CrossRefGoogle Scholar
  65. Reuben, S. R., Gersch, B. J., Swadling, J. P. and Lee, G. de J., 1970, Measurement of pulmonary arterial distensibility in the dog. Cardiovasc. Res., 4:473–481.PubMedCrossRefGoogle Scholar
  66. Reuben, S. R., Swadling, J. P., Gersch, B. J. and Lee, G. de J., 1971, Impedance and transmission properties of the pulmonary arterial system, Cardiovasc. Res., 5:1–9.PubMedCrossRefGoogle Scholar
  67. Severinghaus, J. W., Swenson, E. W., Finley, T. N., Lategola, M. and Williams, J., 1961, Unilateral hypoventilation produced in dogs by occluding one pulmonary artery, J. appl. Riysiol., 16:53–60.Google Scholar
  68. Shaw, J. W., 1971, Pulmonary vasodilator and vasoconstrictor actions of histamine, J. Riysiol, 215:34–35p.Google Scholar
  69. Spencer, H. and Leof, D., 1964, The innervation of the human lung. J. Anat., 98:599–609.PubMedGoogle Scholar
  70. Stern, S. and Braun, K., 1966, Effect of chemoreceptor stimulation on pulmonary veins, Am. J. Riysiol., 210:535–539.Google Scholar
  71. Sylvester, J. T. and McGowan, C., 1978, The effect of agents that bind to cytochrome P-450 on hypoxic pulmonary vasoconstriction, Circulation Res., 43:429–437.PubMedCrossRefGoogle Scholar
  72. Szidon, J. P. and Fishman, A. P., 1969, in: “The pulmonary circulation and interstitial space”, A. P. Fishman and H. H. Hecht, eds., University of Chicago Press, Chicago and London.Google Scholar
  73. Szidon, J. P. and Flint, J. F., 1977, Significance of sympathetic innervation of pulmonary vessels in response to acute hypoxia, J. appl. Physiol. Respirat. Environ. Exercise Riysiol., 43:65–71.Google Scholar
  74. Thompson, B., Barer, G. R. and Shaw, J. W., 1976, The action of histamine on the pulmonary vessels of cats and rats, Clin. & exp. Riarmac. & Physiol., 3:399–414.CrossRefGoogle Scholar
  75. Tyler, T. L., Leffler, C. W. and Cassin, S., 1977, Effects of prostaglandin precursors, prostaglandins and prostaglandin metabolites on pulmonary circulation of perinatal goats. Chest, 71 Supplement:271–273.PubMedGoogle Scholar
  76. Vane, J. R., 1969, The release and fate of vasoactive hormones in the circulation, B. J. Pharmac., 35:209–242.CrossRefGoogle Scholar
  77. Viles, P. H. and Shepherd, J. T., 1968, Evidence for a dilator action of carbon dioxide on the pulmonary vessels of the cat, Circulation Res., 22:325–332.PubMedCrossRefGoogle Scholar
  78. Wagner, P. D., Dantzker, D. R., Dueck, R., Clausen, J. L. and West, J. B., 19771 Ventilation-perfusion inequality in chronic obstructive pulmonary disease, J. clin. Invest., 59:203–216.PubMedCrossRefGoogle Scholar
  79. Weir, E. K., McMurtry, I. F., Tucker, A., Reeves, J. T. and Grover, R. F., 1976, Prostaglandin synthetase inhibitors do not decrease hypoxic pulmonary vasoconstriction, J. appl, Riysiol., 41:714–718.Google Scholar
  80. West, J. B., 1969, in: “The pulmonary circulation and interstitial space”, p 302, A. P. Fishman and H. H. Hecht, eds., University of Chicago Press, Chicago and London.Google Scholar
  81. West, J. B., 1977, State of the art. Ventilation-perfusion relationships, Am. Rev. resp. Dis., 116:919–943.PubMedGoogle Scholar
  82. Widdicomhe, J. G., 1974, in: “Recent advances in physiology”, p.p. 239–278, R. J. Linden, ed., Churchill Livingstone, Edinburgh and London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Gwenda R. Barer
    • 1
  1. 1.epartment of MedicineUniversity of SheffieldEngland

Personalised recommendations