Isolation and Characterization of Biological Membranes

  • George Sachs
  • Rolf Kinne

Abstract

The discovery of a pathological alteration in the plasma membrane of a eukaryotic cell is, for the biochemist, reflexively associated with either isolation of the altered component or the altered entity. The purpose of this chapter is to provide some general guidelines for separation of the membrane as an entity.

Keywords

Membrane Vesicle Brush Border Brush Border Membrane Phosphate Uptake Plasma Membrane Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pretlow, T., E. Weir, and J. Zutegrony. 1975. Problems connected with the separation of different kinds of cells. Int. Rev. Exp. Pathol. 14: 91–204.PubMedGoogle Scholar
  2. 2.
    Miller, R. G., and R. A. Phillips. 1969. Separation of cells by velocity sedimentation. J. Cell. Physiol. 73: 191–201.PubMedCrossRefGoogle Scholar
  3. 3.
    Hannig, K. 1972. Separation of cells and particles by continuous free-flow electrophoresis. In: Techniques of Biochemical and Biophysical Morphology, Vol 1. D. Glick and R. M. Rosenbaum, eds. Wiley-Interscience, New York. pp. 191–232.Google Scholar
  4. 4.
    Hannig, K., H. Wirth, B. H. Meyer, and K. Zeiller. 1975. Free flow electrophoresis. I. Theoretical and experimental investigations of the influence of mechanical and electrokinetic variables on the efficiency of the method. Hoppe Seylers Z. Physiol. Chem. 356: 1209–1233.PubMedCrossRefGoogle Scholar
  5. 5.
    Zeiller, K., R. Loser, G. Pascher, and K. Hannig. 1975. Free flow electrophoresis, n. Analysis of the method with respect to preparative cell separation. Hoppe Seylers Z. Physiol. Chem. 356:1225–1244Google Scholar
  6. 6.
    Kroth, H., and L. Herzenberg. 1974. Fluorescence activated cell sorting of human T and B lymphocytes. Cell. Immunol. 12: 396–406.CrossRefGoogle Scholar
  7. 7.
    Hughes, D. E., and W. L. Nyborg. 1962. Cell disruption by ultrasound. Science 138: 108–114.PubMedCrossRefGoogle Scholar
  8. 8.
    Hunger, M. J., and S. L., Commerford. 1961. Pressure homogenization of mammalian tissues. Biochim. Bio-phys. Acta 47: 580–586.CrossRefGoogle Scholar
  9. 9.
    Milutinovic, S., B. Argent, I. Schulz, and G. Sachs. 1977. Ca+ dependent interaction between zymogen granules and pancreatic plasma membranes. J. Membr. Biol. 36: 281–295.PubMedCrossRefGoogle Scholar
  10. 10.
    Warren, L., M. C. Glick, and M. M. L. Nass. 1966. Membranes of animal cells: Methods of isolation of the surface membrane. J. Cell. Physiol. 68: 269–287.CrossRefGoogle Scholar
  11. 11.
    Heidt, H. W., M. Klingenberg, and M. Milovansev. 1972. Differences between the ATP-ADP ratios in the mitochondrial matrix and in the extramitochondrial space. Eur. J. Biochem. 30: 434–440.CrossRefGoogle Scholar
  12. 12.
    Neville, D. M. 1960. Isolation of a cell membrane fraction from liver. J. Biophys. Biochem. Cytol. 8: 413–422.PubMedCrossRefGoogle Scholar
  13. 13.
    Saccomani, G., H. B. Stewart, D. Shaw, M. Lewin, and G. Sachs. 1977. Characterization of gastric mucosal membranes. X. Fractionation and purification of K+-ATPase containing vesicles by zonal centrifugation and free flow electrophoresis technique. Biochim. Biophys. Acta 465: 311–330.PubMedCrossRefGoogle Scholar
  14. 14.
    Svensson, H. 1961. Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradient. I. The differential equation of solute concentrations at a steady state and its solution for simple cases. Acta Chem. Scand. 15: 325–341.CrossRefGoogle Scholar
  15. 15.
    Kolin, A., and S. J. Luner. 1969. Continuous electrophoresis in fluid endless belts. Anal. Biochem. 30: 111–131.PubMedCrossRefGoogle Scholar
  16. 16.
    Heidrich, H. G., R. Kinne, E. Kinne-Saffran, and K. Hannig. 1972. Polarity of proximal tubule cell in rat kidney. J. Cell Biol. 54: 232–245.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwartz, I. L., L. J. Shlatz, E. Kinne-Saflfran, and R. Kinne. 1974. Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone. Proc. Natl. Acad. Sei. U.S.A. 71: 2595–2599.CrossRefGoogle Scholar
  18. 18.
    Iyengar, R., D. Mailman, and G. Sachs. 1977. Fractionation of collecting duct membrane of dog kidney. Am. J. Physiol. In press.Google Scholar
  19. 19.
    Murer, H., U. Hopfer, E. Kinne-Saffran, and R. Kinne. 1974. Glucose transport in isolated brush-border and lateral-basal plasma membrane vesicles from intestinal epithelial cells. Biochim. Biophys. Acta 345: 170–179.PubMedCrossRefGoogle Scholar
  20. 20.
    Albertson, P. A. 1960. Partition of cell particles and macromolecules. Almquist Wiksell Stockholm.Google Scholar
  21. 21.
    Brunette, D. M., and J. E. Till. 1971. A rapid method for the isolation of L-cell surface membranes using an aqueous two-phase polymer system. J. Membr. Biol. 5: 215–224.CrossRefGoogle Scholar
  22. 22.
    Lesko, L., M. Donlon, G. V. Marinetti, and J. D. Hare. 1973. A rapid method for the isolation of rat liver plasma membranes using an aqueous two-phase polymer system. Biochim. Biophys. Acta 311: 173–179.PubMedCrossRefGoogle Scholar
  23. 23.
    Glossmann, H., and H. Grips. 1974. The preparation of brush-border membranes from rat kidney using an aqueous two-phase polymer system. Naunyn Schmie-debergs Arch. Pharmacol. 282: 439–444.CrossRefGoogle Scholar
  24. 24.
    Neville, D. M., Jr., and H. Glossmann. 1971. Plasma membrane protein subunit composition. A comparative study by discontinuous electrophoresis in sodium do-decyl sulfate. J. Biol. Chem. 246: 6335–6338.PubMedGoogle Scholar
  25. 25.
    O’Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  26. 26.
    Coleman, R., and J. B. Finean. 1966. Preparation and properties of isolated plasma membranes from guinea-pig tissues. Biochim. Biophys. Acta 125: 197–206.CrossRefGoogle Scholar
  27. 27.
    Bosmann, H. B., A. Hagopian, and E. H. Eylar. 1968. Cellular membranes: The isolation and characterization of the plasma and smooth membranes of HeLa cells. Arch. Biochem. 128: 51–69.PubMedCrossRefGoogle Scholar
  28. 28.
    Emmelot, P., C. J. Bos, E. L. Benedetti, and P. H. Rumke. 1964. Chemical composition and enzyme content of plasma membranes isolated from rat liver. Biochim. Biophys. Acta 90: 126–145.PubMedCrossRefGoogle Scholar
  29. 29.
    Robison, G. A., and E. W. Sutherland. 1971. Cyclic AMP and the function of eukaryotic cells: An introduction. Ann. N.Y. Acad. Sci. 185: 5–9.PubMedCrossRefGoogle Scholar
  30. 30.
    McKeel, D. W., and L. J. Jarrett. 1970. Principles and characteristics of membrane of isolated fat cells. J. Cell Biol. 44: 417–432.PubMedCrossRefGoogle Scholar
  31. 31.
    Eichholz, A., and R. K. Crane. 1965. Studies on organization of brush-border in intestinal epithelial cells. J. Cell Biol. 26: 687–691.PubMedCrossRefGoogle Scholar
  32. 32.
    Berger, S. J., and B. Sacktor. 1970. Isolation and biochemical characterization of brush-border from rabbit kidney. J. Cell Biol. 47: 637–645.PubMedCrossRefGoogle Scholar
  33. 33.
    Graham, J. M., J. A. Higgins, and C. Green. 1968. The isolation of rat liver plasma membrane fragments. Biochim. Biophys. Acta 150: 303–305.PubMedCrossRefGoogle Scholar
  34. 34.
    Glossmann, H., and D. M. Neville, Jr. 1971. y-Gluta-myltranspeptidase in kidney brush-border membranes. FEBS Lett. 19: 340–344.Google Scholar
  35. 35.
    Chang, K. J., V. Bennett, and P. Cuatrecasas. 1975. Membrane receptors as general markers for plasma membrane isolation procedures. J. Biol. Chem. 250: 488–500.PubMedGoogle Scholar
  36. 36.
    Phillips, D. R., and M. Morrison. 1971. Exposed protein on the intact human erythrocyte. Biochemistry 10: 1766–1771.PubMedCrossRefGoogle Scholar
  37. 37.
    Cabantchik, Z. I., and A. Rothstein. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membr. Biol. 10: 311–330.PubMedCrossRefGoogle Scholar
  38. 38.
    Mircheff, A. K., and E. M. Wright. 1976. Analytical isolation of plasma membranes of intestinal epthelial cells: Identification of Na,K-ATPase rich membranes and the distribution of enzyme activities. J. Membr. Biol. 28: 309–333.PubMedCrossRefGoogle Scholar
  39. 39.
    Warren, L., and M. C. Glick. 1971. Isolation of surface membranes of animal cells. In: Biomembranes. L. A. Manson, ed. Plenum Press, New York. pp. 257–288.CrossRefGoogle Scholar
  40. 40.
    Wallach, D. H. F., and P. S. Lin. 1973. Critical evaluation of plasma membrane fractionation. Biochim. Biophys. Acta 300: 211–254.PubMedCrossRefGoogle Scholar
  41. 41.
    Steck, T. L. 1972. Membrane isolation. In: Membrane Molecular Biology. C. F. Fox and A. D. Keith eds. Sinauer Press, Stanford, Conn. pp. 76–116.Google Scholar
  42. 42.
    DeDuve, C. 1971. Tissue fractionation past and present. J. Cell Biol. 50: 20D - 55D.CrossRefGoogle Scholar
  43. 43.
    Kaback, H. R. 1972. Bacterial cytoplasmic membrane transport. Biochim. Biophys. Acta 265: 367–416.PubMedCrossRefGoogle Scholar
  44. 44.
    Kinne, R., H. Murer, E. Kinne-Saffran, M. Thees, and G. Sachs. 1975. Sugar transport by renal plasma membrane vesicles. J. Membr. Biol. 21: 375–396.PubMedCrossRefGoogle Scholar
  45. 45.
    Hopfer, U., K. Nelson, J. Perotto, and K. J. Issel-bacher. 1973. Glucose transport in isolated brush border membranes from rat small intestine. J. Biol. Chem. 248: 25–32.PubMedGoogle Scholar
  46. 46.
    Chang, H., G. Saccomani, E. Rabon, R. Schackmann, and G. Sachs. 1977. H+ transport by gastric membrane vesicles. Biochim. Biophys. Acta 464: 313–327.PubMedCrossRefGoogle Scholar
  47. 47.
    Gmaj, P., H. Murer, and R. Kinne. 1977. Ca binding and transport by brush border and basal-lateral membrane vesicles of renal cortex. Pfluegers Arch. 368: R2.Google Scholar
  48. 48.
    Kinne, R. 1976. Properties of the glucose transport system in the renal brush-border membrane. In: Current Topics in Membranes and Transport, Vol. 8. A. Kleinzeller and F. Bronner, eds. Academic Press, New York. pp. 209–267.Google Scholar
  49. 49.
    Evers, C., H. Murer, and R. Kinne. 1977. Effect of parathysin on the transport properties of isolated renal brush border vesicles. Biochem. J. in press.Google Scholar
  50. 50.
    Preiser, H., D. Menard, R. K. Crane, and J. J. Cerda. 1974. Deletion of enzyme protein from the brush-bor-der membrane in sucrase-isomaltase deficiency. Biochim. Biophys. Acta 363: 279–282.PubMedCrossRefGoogle Scholar
  51. 51.
    Bolis, L., J. Hoffman, and A. Leaf, eds. 1976. Membranes and Disease. Raven, New York.Google Scholar
  52. 52.
    Franke, H., M. Malyusz, and Ch. Weiss. 1973. Changes of the Na-K ATPase activity in the isolated, artificially perfused rat kidney. Pfluegers Arch. 339: R45.Google Scholar
  53. 53.
    Franke, H., M. Malyusz, and Ch. Weiss. 1975. Acute change of the Na-K ATPase activity in plasma membranes of the isolated cell-free perfused rat kidney. Pfluegers Arch. 353: 97–106.CrossRefGoogle Scholar
  54. 54.
    Hopfer, U. 1975. Diabetes mellitus: Changes in the transport properties of isolated intestinal microvillous membranes. Proc. Natl. Acad. Sci. U.S.A. 72: 2027–2031.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • George Sachs
    • 1
  • Rolf Kinne
    • 2
  1. 1.Laboratory of Membrane BiologyUniversity of Alabama School of MedicineBirminghamUSA
  2. 2.Max Planck Institute for BiophysicsFrankfurtWest Germany

Personalised recommendations