Numerical Infinite-Order Perturbation Theory

  • Rodney J. Bartlett
  • David M. Silver

Abstract

With the emergence of the Hartree-Fock independent particle model in physics and chemistry, the correlation problem, which Löwdin defined /1/, has constituted one of the primary research areas within quantum chemistry. Löwdin’s contributions to this topic are enormous, including among them his work in density matrix theory /2/, in extended independent particle methods where he proposed the projected Hartree-Fock theory /3/ and the alternate molecular orbital method /4/, and in infinite-order perturbation theory /5/.

Keywords

Perturbation Theory Reaction Operator Double Excitation Density Matrix Theory Quadruple Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.O. Löwdin, Adv. Chem. Phys. 2, 207 (1959).Google Scholar
  2. 2.
    P.O. Löwdin, Phys. Rev. 97, 1474, 1490, 1509 (1955).ADSCrossRefGoogle Scholar
  3. 3.
    P.O. Löwdin, Revs. Mod. Phys. 32, 328 (1960).MATHGoogle Scholar
  4. 4.
    P.O. Löwdin, Nikko Symposium, Molecular Physics, edited by M. Kotani ( Maruzen Company, Ltd., Tokyo, 1954 ), p. 13.Google Scholar
  5. 5.
    P.O. Löwdin, J.Chem. Phys. 19, 1396 (1951);Google Scholar
  6. b.
    P.O. Löwdin, J. Mol. Spectry. 10, 12 (1963);Google Scholar
  7. c.
    P.O. Löwdin, J. Mol. Spectry. 13, 326 (1964);Google Scholar
  8. d.
    P.O. Löwdin, J. Math. Phys. 3, 969 (1962);Google Scholar
  9. e.
    P.O. Löwdin, J. Math. Phys. 3, 1171 (1962);Google Scholar
  10. f.
    P.O. Löwdin, J. Mol. Spectry. 14, 112 (1964);Google Scholar
  11. g.
    P.O. Löwdin, J. Mol. Spectry. 14, 119 (1964);Google Scholar
  12. h.
    P.O. Löwdin, J. Mol. Spectry. 14, 131 (1964);Google Scholar
  13. i.
    P.O. Löwdin, J. Math. Phys. 6, 1341 (1965);Google Scholar
  14. j.
    P.O. Löwdin, Phys. Rev. 139, A357 (1965);Google Scholar
  15. k.
    P.O. Löwdin, J. Chem. Phys. 43, 5175 (1965);Google Scholar
  16. i.
    P.O. Löwdin, Perturbation Theory and Its Applications in Quantum Mechanics (ed. C.H. Wilcox, John Wiley and Sons, New York, 1966), p.255;Google Scholar
  17. m.
    P.O. Löwdin, Int. J. Quant. Chem. 2, 867 (1968).Google Scholar
  18. 6.
    P.O. Löwdin, Adv. Chem. Phys. 14, 283 (1969).Google Scholar
  19. 7.
    J. Goldstone, Proc. R. Soc. Lond. A239, 267 (1957).Google Scholar
  20. 8.
    K.A. Brueckner, Phys. Rev. 97, 1353 (1955); 100, 36 (1955); K.A. Brueckner, C.A. Levinson, and H.M. Mahmood, Phys. Rev. 95, 217 (1954).Google Scholar
  21. 9.
    H.P. Kelly, Adv. Chem. Phys. 14, 129 (1969).CrossRefGoogle Scholar
  22. 10.
    T. Lee, N.C. Dutta, and T.P. Das, Phys. Rev. Letters 25, 204 (1970).ADSCrossRefGoogle Scholar
  23. 11.
    U. Kaldor, Phys. Rev. A7, 427 (1973).ADSCrossRefGoogle Scholar
  24. 12.
    R.J. Bartlett and D.M. Silver, Int. J. Quant. Chem. 9S, 183 (1975).CrossRefGoogle Scholar
  25. 13.
    R.J. Bartlett and D.M. Silver, J. Chem. Phys. 62, 3258 (1975); Int. J. Quant. Chem. 8S 271 (1974); Phys. Rev. A10, 1927 (1974)Google Scholar
  26. 14.
    D.M. Silver and R.J. Bartlett, Phys. Rev., A13, 1 (1976).ADSGoogle Scholar
  27. 15.
    A.D. McLean and M. Yoshimine, “Tables of Linear Molecule Wave Functions,” supplement, IBM Journal of Research and Development November, 1967.Google Scholar
  28. 16.
    A.D. McLean, J. Chem. Phys. 39, 2653 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Rodney J. Bartlett
    • 1
  • David M. Silver
    • 2
  1. 1.Pacific Northwest LaboratoriesBattelle Memorial InstituteRichlandUSA
  2. 2.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations