Low Frequency Dynamics of Proteins Studied by Inelastic Neutron Scattering

  • Stephen Cusack
Part of the Progress in Mathematics book series (NSSA)

Abstract

In order to perform their biological function many proteins need to be able to adopt two or more different conformations and are induced to change from one to another by ligand or substrate binding or by a change in environmental conditions such as pH [1,2,3]. In several cases the nature of such conformational changes has been revealed by X-ray crystallography and shown to range from subtle reorientations of a few sidechains, to displacements of loops (e.g. phosphorylase, triose phosphate isomerase), pseudo-rigid body inter-domain motions (e.g. hexokinase, phosphoglycerate kinase [4]), subunit reorientations (heamoglobin, aspatate-transcarbamylase) and drastic rearrangements of the whole protein (e.g. influenza virus hemagglutinin). Conformational change or functional flexibility of this kind clearly involves internal protein motion. However there is overall direction to the motion and it is usually reversible.

Keywords

Normal Mode Inelastic Neutron Vibrational Motion Normal Mode Analysis Triose Phosphate Isomerase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cooper, A., Sci.Prog. Oxf. 66:473 (1980).Google Scholar
  2. [2]
    Huber,R. and Bennett,W.S. Bioploymers 22:261 (1983).Google Scholar
  3. [3]
    Ringe, D. and Petsko,G.A. Prog. Biophys. Mol. Biol. 45:197 (1985).Google Scholar
  4. [4]
    Watson,H. Elsewhere in these proceedings.Google Scholar
  5. [5]
    Cooper,A. Elsewhere in these proceedings.Google Scholar
  6. [6]
    McCammon, J.A. Rep. Prog.Phys. 47: 1 (1984).CrossRefGoogle Scholar
  7. [7]
    Karplus, M. in “Structural Molecular Biology” eds. Davies,D.B., Saenger,W. and Danyluk,S.S. NATO ASI Series A: Life Sciences 45, Plenum, London (1982).Google Scholar
  8. [8]
    McCammon,J.A. and Harvey,S.C. “Dynamics of proteins and nucleic acids.” Cambridge University Press, Cambridge.Google Scholar
  9. [9]
    Sturtevant,J.M. PNAS 74:2236 (1977).Google Scholar
  10. [10]
    Careri,G., Fasella,P. and Gratton,E. Ann.Rev.Biophys.Bioeng. 8: 69 (1979).CrossRefGoogle Scholar
  11. [11]
    Careri,G. Elsewhere in these proceedings.Google Scholar
  12. [12]
    Austin, R.H., Beeson,K.W., Eisenstein,L., Frauenfelder,H. and Gunsalus,I.C. Biochem. 14: 5355 (1975).CrossRefGoogle Scholar
  13. [13]
    Ansari,A., Berendson,J., Bowne,S.F., Frauenfelder,H., Iben,I.E.T., Shyamsunder,E. and Young,R.D. PNAS 82: 5000 (1985).Google Scholar
  14. [14]
    Middendorf, H.D. Ann.Rev.Biophys.Bioeng. 13: 425 (1984).CrossRefGoogle Scholar
  15. [15]
    Cusack,S. Comm.Mol.Cell.Biophys. 3:243 (1986).Google Scholar
  16. [16]
    Gratton,E. Elsewhere in these proceedings.Google Scholar
  17. [17]
    Parak,F. Elsewhere in these proceedings.Google Scholar
  18. [18]
    Springer,T. “Quasielastic neutron scattering diffusive motions in solids and liquids” 64, Springer-Verlag, Berlin (1972).Google Scholar
  19. [19]
    Lovesey, S.W. “Theory of neutron scattering from condensed matter.” Vol 1, Clarendon Press, Oxford (1984).Google Scholar
  20. [20]
    Bee,M. “Applications of quasielastic neutron scattering to chemistry, biology and material science.” Adam Hilger, LondonGoogle Scholar
  21. [21]
    Zaccai,G. and Jacrot,B. Ann.Rev.Biophys.Bioeng. 12:139 (1983).Google Scholar
  22. [22]
    Neutrons in Biology” ed. Schoenborn, B.P. Basic Life Sciences Vol 27. Plenum Press, New York (1984).Google Scholar
  23. [23]
    Neutron research facilities at the ILL Langevin, Grenoble, France.Google Scholar
  24. [24]
    Somorjai,R. Elsewhere in these proceedings.Google Scholar
  25. [25]
    Lifson,S. in “Structural Molecular Biology” eds. Davies,D.B., Saenger,W. and Danyluk,S.S. NATO ASI Series A: Life Sciences 45, Plenum, London (1982).Google Scholar
  26. [26]
    Levitt,M. J.Mol.Biol. 168:595 and 168:621 (1983).Google Scholar
  27. [27]
    Post,C.B., Brooks,B.R., Karplus,M., Dobson,C.M., Artymiuk,P.J., Cheetham,J.C. and Phillips,D.C. J.Mol.Biol. 190: 455 (1986).CrossRefGoogle Scholar
  28. [28]
    Levy,R.M., Sheridan,R.P., Keepers,J.W., Dubey,G.S., Swaminathan,S. and Karplus,M. Biophys.J. 48: 509 (1985).CrossRefGoogle Scholar
  29. [29]
    Smith,J., Kuczera,K., Tidor,B., Karplus,M., 156–157: 437 (1989).Google Scholar
  30. [30]
    Peticolas,W. in “Structural Molecular Biology” Davies,D.B., Saenger,W. and Danyluk,S.S. NATO ASI Series A: Life Sciences 45, Plenum, London (1982).Google Scholar
  31. [31]
    Suezaki,Y. and Go,N. Int.J.Pept.Prot.Res. 7:333 (1975).Google Scholar
  32. [32]
    Swaminathan,S., Ichiye,T., van Gunsteren,W. and Karplus,M. Biochem. 21: 5230 (1982).CrossRefGoogle Scholar
  33. [33]
    Fillaux,F. Elsewhere in these proceedings.Google Scholar
  34. [34]
    Levitt,M., Sander,C. and Stern,P.S. J.Mol.Biol. 181: 423 (1985).Google Scholar
  35. [35]
    Tidor,B., Irikura,K.K., Brooks,B.R. and Karplus,M. J.Biomol.Struc.Dyn. 1: 231 (1983).CrossRefGoogle Scholar
  36. [36]
    Levitt,M., Sander,C. and Stern,P.S. Int.J.Ouant.Chem. 10: 181 (1983).Google Scholar
  37. [37]
    Brooks,B.R. and Karplus,M. PNAS 80:6571 (1983).Google Scholar
  38. [38]
    Cusack,S., Smith,J., Finney,J., Tidor,B. and Karplus,M. J.Mol.Biol. 202: 903 (1988).CrossRefGoogle Scholar
  39. [39]
    Go,N., Noguti,T. and Nishikawa,T. PNAS 80: 3696 (1983).Google Scholar
  40. [40]
    Derreumeux,P. Thesis, University of Lille I I (1988).Google Scholar
  41. [41]
    Brooks,B.R., Bruccoleri,R.E., Olafson,B.D., States,D.J., Swaminathan,S. and Karplus,M. J.Comp.Chem. 4: 187 (1983).CrossRefGoogle Scholar
  42. [42]
    Smith,J., Cusack,S., Pezzeca,U., Brooks,B.R. and Karplus,M. J.Chem.Phys. 85:3636 (1986).Google Scholar
  43. [43]
    Cusack,S. and Doster,W. Submitted to J. Chem Phys.Google Scholar
  44. [44]
    Jacrot,B., Cusack,S., Dianoux,A.J. and Engelman,D.M. Nature 300: 84 (1982).Google Scholar
  45. [45]
    Bartunik,H.D., Jolles,P., Berthou,J. and Dianoux,A.J. Biopolymers 21: 43 (1982).Google Scholar
  46. [46]
    Cusack,S., Smith,J., Finney,J., Karplus,M. and Trewhella, J. Physica 136B: 256 (1986).Google Scholar
  47. [47]
    Doster,W., Cusack,S. and Petry,W. Nature 337: 754 (1989).Google Scholar
  48. [48]
    Drexel,W. and Peticolas,W.L. Bioploymers 14:715 (1975).Google Scholar
  49. [49]
    Mao,B., Pear,M.R., McCammon,J.A. and Northrup,S.H. Biopolymers 21: 1979 (1982).CrossRefGoogle Scholar
  50. [50]
    Dianoux,A.J., Page,J.N. and Rosenberg,H.M. Phys.Rev.Lett. 58: 886 (1987).Google Scholar
  51. [51]
    Elber,R. and Karplus,M. Phys.Rev.Lett. 56:394 (1986).Google Scholar
  52. [52]
    Parak,F., Knapp,E.W. and Kucheida,D. J.Mol.Biol. 161: 177 (1982).Google Scholar
  53. [53]
    Stöckli,H., Furrer,A., Schoenenberger,Ch., Meier,B.H., Ernst,R.R. and Anderson,I. Physica 136B: 161 (1986).Google Scholar
  54. [54]
    Doster,W., Bachleitner,A., Dunau,R., Hieb1,M. and Lüscher, E. Bioploymers 50: 213 (1986).Google Scholar
  55. [55]
    Frick,B., Richter,D., Petry,W. and Buchenau,U. Z.Phys. B70: 1 (1988).CrossRefGoogle Scholar
  56. [56]
    Fujara,F. and Petry,W. Eurphys.Lett. 4:921 (1987).Google Scholar
  57. [57]
    Elber,R. and Karplus,M. Science 235:318 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stephen Cusack
    • 1
  1. 1.Grenoble OutstationEuropean Molecular Biology LaboratoryGrenobleFrance

Personalised recommendations