The Effect of the Solvent on Protolytic Equilibria

  • R. P. Bell

Abstract

Solvent effects on acid-base equilibria are naturally most marked when the solvent itself enters into the equilibrium, as is the case for the conventional definition of acid strength by means of the equilibrium A + SH ⇌ B + SH 2 + (where SH is the solvent). The existence of such an equilibrium implies that the solvent has some basic properties. Similarly, the occurrence of the reaction B + SH ⇌ A + S (where S is the anion derived by abstracting a proton from the solvent) implies that the solvent is acidic. The most important factor determining qualitative behaviour in a wide range of solvents is the acidic or basic nature of the solvent, as determined by its chemical nature. In a preliminary classification we can neglect other factors, notably the effect of dielectric constant on the association of ions or the forces between them.

Keywords

Dielectric Constant Aprotic Solvent Hydrogen Fluoride Protolytic Equilibrium Anhydrous Acetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Notably: (a) The Chemistry of Non-aqueous Solvents (ed. J. J. Lagowski), Academic Press, New York and London, 1966–1970; (b) Non-aqueous Solvent Systems (ed. T. C. Waddington), Academic Press, New York and London, 1965. Neither of these compilations deals with the alcohols or with the so-called polar aprotic solvents. See also Chemistry in Non-aqueous Ionizing Solvents (ed. G. Jander, H. Spandau, and C. C. Addison), Vieweg-Interscience, Braunschweig and London, 1963–1971.Google Scholar
  2. 2.
    See A. I. Popev, Ref. 1(a), Vol. 3, p. 241.Google Scholar
  3. 3.
    L. P. Hammett and A. J. Deyrup, J. Am. Chem. Soc., 54, 4239 (1932); L. P. Hammett and N. Dietz, J. Am. Chem. Soc., 52, 4795 (1930).Google Scholar
  4. 4.
    W. H. Lee, Ref. 1(a), Vol. 2, 1967, p. 99; R. J. Gillespie and E. A. Robinson, Ref. 1 (b), 1965, p. 117.Google Scholar
  5. 5.
    See M. Kilpatrick and J. G. Jones, Ref. 1(a), Vol. 2 (1967), p. 43; H. H. Hyman and J. J. Katz, Ref. 1(b).Google Scholar
  6. 6.
    J. J. Lagowski and G. A. Moczygemba, Ref. 1(a), Vol. 2 (1967), p. 319: W. J. Jolly and C. J. Hallada, Ref. 1(b), p. 1.Google Scholar
  7. 7.
    Most of the values are taken from the compilations of E. Larsson, Z. Phys. Chem., 169A, 207 (1934), and of L. D. Goodhue and R. M. Hixon, J. Am. Chem. Soc., 56, 1329 (1934). More accurate data exist for monosubstituted benzoic acids [J. H. Elliott and M. Kilpatrick, J. Phys. Chem., 45, 454, 566 (1941)] and anilines [M. Kilpatrick and C. A. Arenberg, J. Am. Chem. Soc., 75, 3812 (1953)], and these have been used to fill in gaps in the table. High accuracy is not important for present purposes. The values used for the ionic products of the alcohols are pK s = 16.7 and 19.1 for methanol and ethanol respectively [G. Brière, B. Crochon, and N. Felici, Compt. Rend., 254, 4458 (1962)].Google Scholar
  8. 8.
    I. M. Kolthoff and S. Brukenstein, J. Am. Chem. Soc., 78, 1 (1956).CrossRefGoogle Scholar
  9. 9.
    Other factors which may be operative have been discussed by P. Bartlett and J. D. McCollum [J. Am. Chem. Soc.,78, 1441 (1956)], who conclude from a combination of kinetic and indicator measurements that propan-2-ol is a very much weaker base than water.Google Scholar
  10. 10.
    J. Hine and M. Hine, J. Am. Chem. Soc., 74, 5267 (1952).Google Scholar
  11. 11.
    F. F. H. Verhoek, J. Am. Chem. Soc., 58, 2577 (1936).CrossRefGoogle Scholar
  12. 12.
    E. N. Vasenko, Zh. Fiz. Khim., 21, 361 (1947); 22, 999 (1948); 23, 959 (1949).Google Scholar
  13. 13.
    J. H. Elliott and M. Kilpatrick, J. Phys. Chem., 45, 454, 466, 473 (1941).Google Scholar
  14. 14.
    Kilpatrick and Arenberg, in Ref. 7.Google Scholar
  15. 15.
    W. F. K. Wynne-Jones, Proc. Roy. Soc., A, 140, 440 (1933).CrossRefGoogle Scholar
  16. 16.
    Further plots, covering all the acids studied, are given by J. H. Elliott and M. Kilpatrick, J. Phys. Chem., 45, 466 (1941).CrossRefGoogle Scholar
  17. 17.
    I. M. Kolthoff and S. Bruckenstein, J. Am. Chem. Soc., 78, 1, 10 (1956).CrossRefGoogle Scholar
  18. 18.
    N. Bjerrum, Kgl. Danske Vid. Selsk. Math.-fys. Medd., 7, No. 9 (1926); R. M. Fuoss and C. A. Kraus, J. Am. Chem. Soc., 55, 1919 (1933).Google Scholar
  19. 19.
    For a review, see A. J. Parker, Chem. Soc. Quart. Rev., 16, 163 (1962).CrossRefGoogle Scholar
  20. 20.
    C. R. Witschonke and C. A. Kraus, J. Am. Chem. Soc., 69, 2471 (1947).CrossRefGoogle Scholar
  21. 21.
    H. van Looy and L. P. Hammett, J. Am. Chem. Soc., 81, 3872 (1959).CrossRefGoogle Scholar
  22. 22.
    See particularly I. M. Kolthoff, S. Bruckenstein, and M. K. Chantooni, J. Am. Chem. Soc., 83, 3927 (1961); I. M. Kolthoff and M. K. Chantooni, J. Am. Chem. Soc., 87, 4428 (1965); J. Phys. Chem., 70, 856 (1966); I. M. Kolthoff, M. K. Chantooni, and S. Bhowmik, J. Am. Chem. Soc., 88, 5430 (1966).Google Scholar
  23. 23.
    For a review see J. F. Coetzee, Progr. Phys. Org. Chem., 4, 45 (1967).CrossRefGoogle Scholar
  24. 24.
    C. D. Ritchie and R. E. Uschold, J. Am. Chem. Soc., 89, 1721, 2752, 2960 (1967); E. C. Steiner and J. M. Gilbert, J. Am. Chem. Soc., 87, 382 (1965); E. C. Steiner and J. D. Starkey, J. Am. Chem. Soc., 89, 2751 (1967); I. M. Kolthoff, M. K. Chantooni, and S. Bhowmik, J. Am. Chem. Soc., 90, 23 (1968).Google Scholar
  25. 25.
    For a review, see K. Bowden, Chem. Rev., 66, 119 (1966).CrossRefGoogle Scholar
  26. 26.
    Comprehensive reviews have been published by M. M. Davis, to whom much recent work is due. See M. M. Davis, Nat. Bur. Stand. Monographs, 105 (1968); Ref. 1(a), Vol. 3 (1970), p. 1.Google Scholar
  27. 27.
    See, e.g., R. M. Fuoss and C. A. Kraus, J. Am. Chem. Soc., 55, 2387 (1933); 57, 1 (1935); F. M. Batson and C. A. Kraus, J. Am. Chem. Soc., 56, 2017 (1934); D. A. Rothrock and C. A. Kraus, J. Am. Chem. Soc., 59, 1699 (1937); D. T. Copenhafer and C. A. Kraus, J. Am. Chem. Soc., 73, 4457 (1951); H. S. Young and C. A. Kraus, J. Am. Chem. Soc., 73, 4732 (1951); A. A. Maryott, J. Res. Nat. Bur. Stand., 41, 1 (1948).Google Scholar
  28. 28.
    See, e.g., G. M. Barrow and E. A. Yerger, J. Am. Chem. Soc., 71, 5211 (1954); 77, 4474, 6206 (1955); R. P. Bell and J. E. Crooks, J. Chem. Soc., 3513 (1962); S. Bruckenstein and A. Saito, J. Am. Chem. Soc., 87, 698 (1965); S. Bruckenstein and D. F. Unterecker, J. Am. Chem. Soc., 91, 5741 (1969).Google Scholar
  29. 29.
    D. F. de Tar and R. W. Novak, J. Am. Chem. Soc., 92, 1361 (1970).CrossRefGoogle Scholar
  30. 30.
    M. M. Davis and H. B. Hetzer, J. Res. Nat. Bur. Stand., 60, 569 (1958); M. M. Davis and M. Paabo, J. Org. Chem., 31, 1804 (1966).Google Scholar
  31. 31.
    E. Grunwald and B. J. Berkowitz, J. Am. Chem. Soc.,73, 4939 (1951). The term medium activity coefficient has also been suggested, and is perhaps more descriptive.Google Scholar
  32. 32.
    A recent comparison of the results of various assumptions shows a conspicuous lack of agreement; see A. J. Parker and R. Alexander, J. Am. Chem. Soc., 90, 3313 (1968).Google Scholar
  33. 33.
    E. Grunwald and E. Price, J. Am. Chem. Soc., 86, 4517 (1964).CrossRefGoogle Scholar
  34. 34.
    See also D. W. Fong and E. Grunwald, J. Phys. Chem., 73, 3909 (1969).CrossRefGoogle Scholar

Copyright information

© R. P. Bell 1973

Authors and Affiliations

  • R. P. Bell
    • 1
  1. 1.University of StirlingScotland

Personalised recommendations