Abstract
The exact verbal definition of qualitative concepts is more often the province of philosophy than of physical science. However, the various definitions suggested for acids and bases have been closely linked with the development of physical chemistry and have often served to stimulate experimental work and to further our understanding of chemical processes, and we shall therefore devote some time to this subject. The definitions used in the remainder of this book will be those proposed by Brönstedl in 1923, namely, An acid is a species having a tendency to lose a proton, and a base is a species having a tendency to add on a proton. This can be represented schematically by A ⇌ B + H+, where A and B are termed a conjugate (or corresponding) acid-base pair.2 Before examining the consequences of this definition and its relation to more recent concepts we shall consider briefly the previous history of the terms ‘acid’ and ‘base’.
Keywords
Lewis Acid Proton Affinity Bronsted Acid Hydrogen Halide Ethyl DiazoacetatePreview
Unable to display preview. Download preview PDF.
References
- 1.J. N. Brönsted, Rec. Tray. Chim., 42, 718 (1923).CrossRefGoogle Scholar
- 2.It is frequently stated that the acid-base definition given here was put forward almost simultaneously by Brönsted and by T. M. Lowry [Chem. and Ind.,42, 43 (1923)]. However, although Lowry’s paper undoubtedly contains many of the ideas underlying this definition, especially for bases, it does not contain an explicit definition, and it is nowhere made clear that Lowry at that time regarded NH4 as an acid or CH3CO; as a base. In fact, in a later paper [J. Chem. Soc.,2562 (1927)], Lowry himself writes, More novelty is to be found in the perfectly logical conclusion of Brönsted that the anion of an acid is also a base or proton acceptor, in view of the fact that it can combine with a proton to form a molecule of the undissociated acid’: hence it does not seem justifiable to regard Lowry as one of the originators of the definition. I am indebted to the late Professor E. A. Guggenheim for calling my attention to this point. It is also noteworthy that G. N. Lewis (Valency and the Structure of Atoms and Molecules,(Reinhold, New York, 1923, p. 141) gave the same acid-base definition, and wrote, `… we may regard the ammonium ion as an acid’. However, he did not follow up the consequences of this view, and preferred the alternative definition of acids with which his name is usually associated.Google Scholar
- 3.P. Walden, Salts, Acids, and Bases: Electrolytes: Stereochemistry, Cornell, New York, 1929.Google Scholar
- 4.J. L. Gay-Lussac, Gab., Ann. Phys., 48, 341 (1814).CrossRefGoogle Scholar
- 5.E.g., A. Werner, Z. Anorg. Chem., 3, 267 (1893); 15, 1 (1897); Ber., 40, 4133 (1907).Google Scholar
- 6.G. N. Lewis, Valency and the Structure of Atoms and Molecules, Reinhold, New York, 1923.Google Scholar
- 7.See particularly D. P. N. Satchell and R. S. Satchell, Chem. Soc. Quart. Rev., 25, 171 (1971).CrossRefGoogle Scholar
- For summaries see: Symposium on Hard and Soft Acids and Bases, Chem. and Eng. News.,43, 90 (1965); R. G. Pearson, Science.,151, 172 (1966); Chem. in Britain,103 (1967): Survey Progr. Chem.,5, 1 (1970): M. J. Frazer, New Scientist,662 (1967).Google Scholar
- 9.J. O. Edwards, G. C. Morrison, V. F. Ross, and J. W. Schultz, J. Am. Chem. Soc., 77, 266 (1955).CrossRefGoogle Scholar
- 10.T. P. Onak, H. Landesman, R. E. Williams, and I. Shapiro, J. Phys. Chem., 63. 1533 (1959): W. D. Phillips, H. C. Miller. and E. L. Muetterties, J. Am. Chem. Soc., 81, 4496 (1959); R. J. Thompson and J. C. Davis, Jr., Inorg. Chem., 4, 1464 (1965).Google Scholar
- 11.R. P. Bell, The Proton in Chemistry, Methuen, London, 1959, pp. 13, 93.Google Scholar
- 12.For details of the evidence and further references, see R. P. Bell, J. O. Edwards, and R. B. Jones in The Chemistry of Boron and its Compounds (ed. E. L. Muetterties ), Wiley, New York, 1966. pp. 209–221.Google Scholar
- 13.A. Hantzsch, Ber., 32, 575 (1899).Google Scholar
- 14.A. Hantzsch, Z. Elektrochem., 29, 244 (1923); 30, 202 (1924); Ber., 58, 953 (1925).Google Scholar
- 15.K. J. Pedersen, Kgl. Dansk Vid. Selsk. Math-fys. Medd., 12 No. 1 (1932); J. Phys. Chem., 38, 581 (1934).Google Scholar
- 16.Hantzsch, and most later workers, made measurements in the neighbourhood of 0°C.Google Scholar
- 17.M. Eigen and J. Schoen, Z. Elektrochem., 59, 483 (1955); M. Eigen and L. De Maeyer, Z. Elektrochem., 59, 986 (1955).Google Scholar
- 18.A. Hantzsch and M. Kalb, Ber., 32, 3116 (1899): J. G. Aston, J. Am. Chem. Soc., 52, 5254 (1930): 53, 1448 (1931).Google Scholar
- 19.A. Werner, Neuere Anchauungen auf dem Gebiete der anorganischen Chemie, 2nd edn., Veweg, Braunschweig, 1909, p. 218.Google Scholar
- 20.B. E. Conway, in Modern Aspects of Electrochemistry (ed. J. O’M. Bockris and B. E. Conway), No. 3, MacDonald, London, 1964, p. 43.Google Scholar
- 21.P. A. Giguère, Rev. Chim. Minérale, 3, 627 (1966).Google Scholar
- 22.A. Volmer, Annalen, 440, 200 (1924).Google Scholar
- 23.R. E. Richards and J. A. S. Smith, Trans. Faraday Soc.,47, 1261 (1951). See also Y. Kakiuchi, H. Shono, H. Matsu, and K. Kigoshi, J. Chem. Phys.,19, 1069 (1951); J. Phys. Soc. Japan,7, 102 (1952), for HClO4•H2O.Google Scholar
- 24.E. R. Andrew and N. D. Finch, Proc. Phys. Soc., B, 70, 980 (1957).CrossRefGoogle Scholar
- 25.D. E. O’Reilly, E. M. Peterson, and J. M. Williams, J. Chem. Phys., 54, 96 (1971).CrossRefGoogle Scholar
- V. Luzzati, Acta Cryst.,4, 239 (1951); 6, 157 (1953); Y. K. Yoon and G. B. Carpenter, Acta Cryst.,12, 17 (1959); F. S. Lee and G. B. Carpenter, J. Phys. Chem.,63, 279 (1959); C. E. Nordman, Acta Cryst.,15, 18 (1962). A report [P. BourreMaladière, Compt. Rend.,246, 1063 (1958)] that H2SO4•H20 contains sulphuric acid molecules has been refuted by I. Taessler and I. Olovsson, [Acta Cryst.,B24, 299 (1968)], who found good evidence for H3O+ • HSO4.Google Scholar
- 27.D. E. Bethell and N. Sheppard, J. Chem. Phys., 21, 1421 (1953).CrossRefGoogle Scholar
- 28.C. C. Ferriso and D. F. Hornig, J. Chem. Phys., 23, 1464 (1955).CrossRefGoogle Scholar
- 29.D. J. Millen and E. G. Vaal, J. Chem. Soc., 2913 (1956).Google Scholar
- 30.J. T. Mullhaupt and D. F. Hornig, J. Chem. Phys., 24, 169 (1956); R. C. Taylor and G. L. Vidale, J. Am. Chem. Soc., 78, 5999 (1956).Google Scholar
- 31.H. G. Grimm, Z. Elektrochem., 31, 474 (1925).Google Scholar
- 32.J. Sherman, Chem. Rev., 11, 164 (1932).CrossRefGoogle Scholar
- 33.V. Kondratiev and N. D. Sokolov, Zh. Fiz. Khim., 29, 1265 (1955); F. W. Lampe and J. H. Futtrell, Trans. Faraday Soc., 59, 1957 (1963).Google Scholar
- 34.S. I. Vetchinkin, E. I. Pshenichnov, and N. D. Sokolov, Zh. Fiz. Khim., 33, 1269 (1959).Google Scholar
- 35.Ref. 13, p. 59.Google Scholar
- 36.P F. Knewstubb and A. W. Tickner, J. Chem. Phys., 36, 674 (1962); 38, 464 (1963).Google Scholar
- 37.H. D. Beckey, Z. Naturforsch., 14a, 712 (1959); 15a, 822 (1960).Google Scholar
- 38.D. Van der Raalte and A. G. Harrison, Canad. J. Chem., 41, 3118 (1963); see also M. A. Haney and J. L. Franklin, J. Chem. Phys., 50, 2028 (1969).Google Scholar
- 39.V. L. Tal’rose and E. L. Frankevich, Dokl. Akad. Nauk S.S.S.R., 111, 376 (1956); J. Am. Chem. Soc., 80, 2344 (1958).Google Scholar
- 40.J. L. Beauchamp and S. E. Butterill, J. Chem. Phys., 48, 1783 (1968); see also J. Long and B. Munson, J. Chem. Phys., 53, 1356 (1970).Google Scholar
- 41.For a summary up to 1963, see J. L. J. Rosenfeld, J. Chem. Phys.,40, 384 (1964); Acta Chem. Scand.,18, 1719 (1964). It is interesting to note that theory predicts a positive t H of 40–60 kcal mol-1 for the reaction H3O++H+ H402+; the last species has never been detected experimentally.Google Scholar
- 42.D. M. Bishop, J. Chem. Phys., 43, 4453 (1965).CrossRefGoogle Scholar
- 43.R. Gaspar, I. Tamassy-Lentei, and V. Kruglyak, J. Chem. Phys., 36, 740 (1962); J. W. Moskowitz and M. C. Harrison, J. Chem. Phys., 43, 3550 (1965).Google Scholar
- 44.A. C. Hopkinson, N. K. Holbrook, K. Yates, and I. G. Cszimadia, J. Chem. Phys., 49, 3596 (1968).CrossRefGoogle Scholar
- 45.H. Goldschmidt and O. Udby, Z. Phys. Chem., 60, 728 (1907); H. Goldschmidt, Z. Elektrochem., 15, 4 (1909).Google Scholar
- 46.It is reasonable to assume by analogy that the ‘hydrogen ion’ in an alcohol ROH has the formula ROH, hence that the equilibrium can be written ROH; +H2O ROH+H3O+; however, this cannot be deduced from experiments in which the concentration of the alcohol is effectively constant.Google Scholar
- 47.G. Bredig, Z. Elektrochem., 18, 535 (1912); W. S. Miller, Z. Phys. Chem., 85, 129 (1913).Google Scholar
- 48.G. Nonhebel and H. B. Hartley, Phil. M1dag., 50, 734 (1925); L. Thomas and E. Marum, Z. Phys. Chem., 143, 213 (1929).Google Scholar
- 49.P. Gross, A. Jamöck, and F. Patat, Monatsh., 63, 124 (1933).Google Scholar
- 50.L. S. Bagster and B. D. Steele, Trans. Faraday Soc., 8, 51 (1912); L. S. Bagster and G. Cooling, J. Chem. Soc., 693 (1920).Google Scholar
- 51.M. Schneider and P. A. Giguère, Compt. Rend., B, 267, 551 (1968).Google Scholar
- 52.See, e.g., R. Suhrmann and F. Breyer, Z. Phys. Chem., 23B, 193 (1933).Google Scholar
- 53.M. Falk and P. A. Giguère, Canad. J. Chem., 35, 1195 (1957); 36, 1680 (1958).Google Scholar
- 54.C. G. Swain and R. F. W. Bader, Tetrahedron, 10, 182 (1960); C. G. Swain, R. F. W. Bader, and E. R. Thornton, Tetrahedron, 10, 200 (1960); W. R. Busing and D. F. Hornig, J. Phys. Chem., 65, 284 (1961).Google Scholar
- 55.M. Eigen and L. de Maeyer, Z. Elektrochem., 60, 1037 (1956); The Structure of Electrolytic Solutions (ed. W. J. Hamer ), Wiley, New York, 1959, p. 64.Google Scholar
- 56.M. Eigen, Angew. Chem., 75, 489 (1963).CrossRefGoogle Scholar
- 57.B. E. Conway, J. O’M. Bockris, and H. Linton, J. Chem. Phys., 24, 834 (1956).CrossRefGoogle Scholar
- 58.L. Hall, Phys. Rer., 73, 775 (1948).CrossRefGoogle Scholar
- 59.T. Ackermann, Z. Phys. Chem (Frankfurt), 27, 253 (1961).CrossRefGoogle Scholar
- 60.R. More O’Ferrall, G. W. Koeppl, and A. J. Kresge, J. Am. Chem. Soc., 93, 1 (1971).CrossRefGoogle Scholar
- 61.E. G. Weidemann and G. Zundel, Z. Phys., 198, 288 (1967); G. Zundel, Angew. Chem. Internat. Edn., 8, 499 (1969).Google Scholar
- 62.K. Fajans and G. Joos, Z. Phys. Chem., 23, 1, 31 (1924).Google Scholar
- 63.E. Wicke, M. Eigen, and T. Ackermann, Z. Phys. Chem. (Frankfurt), 1, 340 (1954).CrossRefGoogle Scholar
- 64.E. Glueckauf, Trans. Faraday Soc., 51, 1235 (1955).CrossRefGoogle Scholar
- 65.R. P. Bell and K. N. Bascombe, Disc. Faraday Soc., 24, 158 (1957). A similar treatment for concentrated alkaline solution leads to a hydration number of 3 for the hydroxide ion; cf. G. Yagil and M. Anbar, J. Am. Chem. Soc., 85, 2376 (1963); R. Stewart and J. P. O’Donnell, Canad. J. Chem., 42, 1681 (1964).Google Scholar
- 66.A. H. Laurence, D. E. Campbell, S. E. Wiberley, and H. M. Clark, J. Phys. Chem., 60, 901 (1956); D. G. Tuck and R. M. Diamond, J. Phys. Chem., 65, 193 (1961).Google Scholar
- 67.E. Glueckauf and G. P. Kitt, Proc. Roy. Soc., A, 228, (1955).Google Scholar
- 68.J. Rudolph and H. Zimmermann, Z. Phys. Chem. (Frankfurt), 43, 311 (1964).Google Scholar
- 69.J. O. Lundgren and I. Olovsson, J. Chem. Phys., 49, 1068 (1968).CrossRefGoogle Scholar
- 70.A. C. Pavia and P. A. Giguère, J. Chem. Phys., 52, 3551 (1970).CrossRefGoogle Scholar
- 71.I. Olovsson, J. Chem. Phys., 49, 1063 (1968).CrossRefGoogle Scholar
- 72.R. D. Gillard and G. Wilkinson, J. Chem. Soc., 1640 (1964).Google Scholar
- 73.A. S. Gilbert and N. Sheppard, J. Chem. Soc., D, 337 (1971).Google Scholar
- 74.J. M. Williams and S. W. Petersen, J. Am. Chem. Soc., 91, 776 (1969); D. E. O’Reilly, E. M. Peterson, C. E. Scheie, and J. M. Williams, J. Chem. Phys., 55, 5629 (1971).Google Scholar
- 75.P. Kebarle, Advances in Chemistry, 72 (Am. Chem. Soc., 1968 ), p. 24.Google Scholar
- 76.M. de Paz, J. J. Leventhal, and L. Friedman, J. Chem. Phys., 49, 5543 (1968).CrossRefGoogle Scholar
- 77.M. de Paz, A. G. Giardini, and L. Friedman, J. Chem. Phys., 52, 687 (1970).CrossRefGoogle Scholar
- 78.E. C. Baughan, J. Chem. Soc., 1403 (1940).Google Scholar
- 79.H. F. Halliwell and S. C. Nyburg, Trans. Faraday Soc., 59, 1126 (1963). These authors give a useful summary of earlier estimates of this quantity. Conway prefers a slightly higher value, but gives an upper limit of 267 kcal mol-1. See also N. A. Izmailov, Zh. Fiz. Khim., 34, 2414 (1960).Google Scholar
- 80.J. T. Edward and I. C. Wang, Canad. J. Chem., 40, 399 (1962): G. Yagil and M. Anbar, J. Am. Chem. Soc., 85, 2376 (1963).Google Scholar
- 81.J. L. Moruzzi and A. V. Phelps, J. Chem. Phys., 45, 4617 (1966).CrossRefGoogle Scholar