Kinetic Isotope Effects in Proton-Transfer Reactions

  • R. P. Bell

Abstract

Kinetic isotope effects in general have now become an everyday tool of the mechanistic organic chemist, and this is particularly true of hydrogen isotope effects, partly because hydrogen is involved in so many reactions, and partly because such effects are much larger for hydrogen than for the isotopes of heavier atoms. It is interesting to note that the rate differences between hydrogen and deuterium compounds are sometimes so large that the use of deuterium compounds has been proposed as a practical expedient for slowing down harmful reactions, e.g., the deterioration of lubricants by oxidation.1 Since the publication of the first edition of this book a number of books and review articles have appeared on the general subject of kinetic isotope effects.2–5 The present chapter will therefore be confined almost entirely to isotope effects in proton-transfer reactions, though some reference will be made to the closely allied problem of reactions involving the transfer of hydrogen atoms, especially in connection with the tunnel effect. On the other hand, no reference will be made to the increasing use of secondary hydrogen isotope effects for obtaining information about neighbouring group participation, especially in solvolytic reactions,6 since these do not normally involve proton transfers. Even in the field of proton-transfer reactions only a selection of the available material has been covered.

Keywords

Transition State Proton Transfer Isotope Effect Tunnel Effect Kinetic Isotope Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Krumbiegel, Z. Chem., 8, 328 (1968).CrossRefGoogle Scholar
  2. 2.
    L. Melander, Isotope Effects on Reaction Rates, Ronald Press, New York, 1960.Google Scholar
  3. 3.
    Isotope Mass Effects in Chemistry and Biology,Butterworths, London, 1964; also in Pure Appl. Chem.,8, Nos. 3 and 4 (1964).Google Scholar
  4. 4.
    W. H. Sanders, Survey Progr. Chem., 3, 109 (1966).Google Scholar
  5. 5.
    Isotope Effects in Chemical Reactions (ed. C. J. Collins and N. S. Bowman), Van Nostrand Reinhold, New York, 1970.Google Scholar
  6. 6.
    For recent reviews of this subject, see the articles and by V. J. Shiner and by D. E. Sunko S. Borcic in Ref. 5.Google Scholar
  7. 7.
    G. L. Coté and H. W. Thompson, Proc. Roy. Soc., A, 210, 206 (1951).CrossRefGoogle Scholar
  8. 8.
    R. P. Bell, Trans. Faraday Soc., 66, 2770 (1970).CrossRefGoogle Scholar
  9. 9.
    J. Bigeleisen, J. Chem. Phys., 17, 675 (1949).CrossRefGoogle Scholar
  10. 10.
    C. G. Swain, E. C. Stivers, J. F. Reuwer, and L. J. Schaad, J. Am. Chem. Soc., 80, 5885 (1958).CrossRefGoogle Scholar
  11. 11.
    J Bigeleisen, Tritium in the Physical and Biological Sciences,I.A.E.H. Vienna, 1, 161 (1962).Google Scholar
  12. 12.
    J. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta, 19, 117 (1963).CrossRefGoogle Scholar
  13. 13.
    M. Wolfsberg and M. J. Stern, Pure Appl. Chem., 8, 225, 325 (1964).CrossRefGoogle Scholar
  14. 14.
    M. J. Stern and M. Wolfsberg, J. Chem. Phys., 39, 2776 (1963); 45, 2618, 4105 (1966); J. Pharm. Sci., 54, 849 (1965).Google Scholar
  15. 15.
    M. J. Stern, M. E. Schneider, and P. C. Vogel, J. Chem. Phys., 55, 4286 (1971).CrossRefGoogle Scholar
  16. 16.
    P C. Vogel and M. J. Stern, J. Chem. Phys., 54, 779 (1971).CrossRefGoogle Scholar
  17. 17.
    M. J. Stern and P. C. Vogel, J. Am. Chem. Soc., 93, 4664 (1971).CrossRefGoogle Scholar
  18. 18.
    M. E. Schneider and M. J. Stern, J. Am. Chem. Soc., 94, 1517 (1972).CrossRefGoogle Scholar
  19. 19.
    M. J. Stern, W. Spindel, and E. V. Monse, J. Chem. Phys., 48, 2908 (1968).CrossRefGoogle Scholar
  20. 20.
    E. V. Monse, W. Spindel, and M. J. Stern, Adv. Chem. Ser., 89, 148 (1969).CrossRefGoogle Scholar
  21. 21.
    T. T. S. Huang, W. J. Kass, W. E. Buddenbaum, and P. E. Yankwich, J. Phys. Chem., 72, 4431 (1968).CrossRefGoogle Scholar
  22. 22.
    W. D. Emmons and M. F. Hawthorne, J. Am. Chem. Soc., 78, 5593 (1956).CrossRefGoogle Scholar
  23. 23.
    M. H. Davies, to be published (1972).Google Scholar
  24. 24.
    A. Streitwieser and D. E. van Sickle, J. Am. Chem. Soc., 84, 254 (1962).CrossRefGoogle Scholar
  25. 25.
    R. P. Bell and D. M. Goodall, Proc. Roy. Soc., A, 294, 273 (1966).CrossRefGoogle Scholar
  26. 26.
    M. Christen and H. Zollinger, Heir. Chim Acta, 45, 2057 (1962).CrossRefGoogle Scholar
  27. 27.
    E. Grovenstein and N. S. Aprahamian, J. Am. Chem. Soc., 84, 212 (1962).CrossRefGoogle Scholar
  28. 28.
    B. T. Baliga and A. N. Boums, Canad. J. Chem., 44, 379 (1966).CrossRefGoogle Scholar
  29. 29.
    H. Zollinger, Adv. Phys. Org. Chem., 2, 163 (1964).CrossRefGoogle Scholar
  30. 30.
    E. S. Lewis and L. H. Funderburk, J. Am. Chem. Soc., 89, 2322 (1967); E. S. Lewis and J. K. Robinson, J. Am. Chem. Soc., 90, 4337 (1968).Google Scholar
  31. 31.
    R. P. Bell and J. E. Crooks, Proc. Roy. Soc., A, 286, 285 (1965).Google Scholar
  32. 32.
    D. J. Barnes and R. P. Bell, Proc. Roy. Soc., A, 318, 421 (1970).CrossRefGoogle Scholar
  33. 33.
    R. P. Bell and B. G. Cox, J. Chem. Soc., B, 194 (1970).Google Scholar
  34. 34.
    R. P. Bell and B. G. Cox, J. Chem. Soc., B, 783 (1971).Google Scholar
  35. 35.
    R. P. Bell and D. M. Goodall, Proc. Roy. Soc., A, 294, 273 (1966).CrossRefGoogle Scholar
  36. 36.
    R. P. Bell, W. H. Sachs, and R. L. Tranter, Trans. Faraday Soc., 67, 1995 (1971).CrossRefGoogle Scholar
  37. 37.
    R. P. Bell, Disc. Faraday Soc., 39, 16 (1966).CrossRefGoogle Scholar
  38. 38.
    F. H. Westheimer, Chem. Rev., 61, 265 (1961).CrossRefGoogle Scholar
  39. 39.
    J. Bigeleisen, Pure Appi. Chem., 8, 217 (1964).CrossRefGoogle Scholar
  40. 40.
    A V. Willi and M. Wolfsberg, Chem. and Ind., 2097 (1964).Google Scholar
  41. 41.
    W J. Albery, Trans. Faraday Soc., 63, 200 (1967).CrossRefGoogle Scholar
  42. 42.
    R. A. More O’Ferrall and J. Kouba, J. Chem. Soc., B, 985 (1967).Google Scholar
  43. 43.
    R. A. More O’Ferrall, J. Chem. Soc., B, 785 (1970).Google Scholar
  44. 44.
    W. A. Pryor and K. G. Kneipp, J. Am. Chem. Soc., 93, 5584 (1971).CrossRefGoogle Scholar
  45. 45.
    A. V. Willi, Hely. Chim. Acta, 54, 1220 (1971).CrossRefGoogle Scholar
  46. 46.
    C. D. Ritchie and H. F. King, J. Am. Chem. Soc., 90, 825, 833, 838 (1968).CrossRefGoogle Scholar
  47. 47.
    R. P. Bell, Trans. Faraday Soc., 57, 961 (1961).CrossRefGoogle Scholar
  48. 48.
    J. R. Platt, J. Chem. Phys., 18, 932 (1950); H. C. Longuet-Higgins and D. A. Brown, J. Inorg. Nucl. Chem., 1, 60 (1955); L. Salem, J. Chem. Phys., 38, 1227 (1963).Google Scholar
  49. 49.
    R. F. W. Bader, Canad. J. Chem., 42, 1822 (1964).CrossRefGoogle Scholar
  50. 50.
    R. P. Bell, W. H. Sachs, and R. L. Tranter, Trans. Faraday Soc., 67, 1995 (1971).CrossRefGoogle Scholar
  51. 51.
    R. H. Fowler and L. Nordheim, Proc. Roy. Soc., A, 119, 173 (1928); L. Nordheim, Proc. Roy. Soc., A, 121, 626 (1928).Google Scholar
  52. 52.
    See, e.g., G. Gamow, Structure of Atomic Nuclei and Nuclear Transformations,Oxford, 1937, Ch. 5.Google Scholar
  53. 53.
    J. Weiss, Proc. Roy. Soc., A, 222, 128 (1954); R. J. Marcus, B. J. Zwolinski, and H. Eyring, J. Phys. Chem., 58, 432 (1954).Google Scholar
  54. 54.
    F. Hund., Z. Physik., 43, 805 (1927); D. G. Bourgin, Proc. Nat. Acad. Sci., 15, 357 (1929); R. M. Langer, Phys. Rev., 34, 92 (1929); S. Roginsky and L. Rosenkewitsch, Z. Phys. Chem., B, 10, 47 (1930); E. Wigner, Z. Phys. Chem., B, 19, 203 (1932); R. P. Bell, Proc. Roy. Soc., A, 139, 466 (1933); C. E. H. Bawn and G. Ogden, Trans. Faraday Soc., 30, 434 (1934).Google Scholar
  55. 55.
    H. S. Johnston, Adv. Chem. Phys., 3, 131 (1961).CrossRefGoogle Scholar
  56. 56.
    E. F. Caldin, Chem. Rev., 69, 135 (1969).CrossRefGoogle Scholar
  57. 57.
    M. D. Harmony, Chem. Soc. Rev., 1, 211 (1972).CrossRefGoogle Scholar
  58. 58.
    S. G. Christov, Ann. Univ. Sofia Fac. Phys. Math., 42, 69 (1945–1946); C. R. Acad. Bulg. Sci., 1, 43 (1948); Z. Elektrochem., 62, 567 (1958); 64, 840 (1960); Dokl. Akad. Nauk SSSR, 125, 141 (1959); 136, 663 (1960); Z. Physik. Chem. (Leipzig), 212, 40 (1959); 214, 40 (1960); Ber. Bunsengesell. Phys. Chem., 67, 117 (1963); 76, 507 (1972); Electrochim. Acta, 4, 194, 306 (1961); 9, 575 (1963); Ann. Phys., 12, 20 (1963); 15, 87 (1965); Disc. Faraday Soc., 39, 60, 254, 263 (1965); J. Res. Inst. Catalysis, Hokkaido Univ., 16, 169 (1968); Croat. Chem. Acta, 44, 67 (1972).Google Scholar
  59. 59.
    R. P. Bell, Trans. Faraday Soc., 55, 1 (1959). In this paper expression (171) was regarded as an approximate one, since it was based on the Brillouin—WentzelKramers (B.W.K.) approximate solution of the wave equation. However, in this particular case the result is exact [E. C. Kemble, Fundamental Principles of Quantum Mechanics,McGraw-Hill, New York, 1937, Ch. 3; D. L. Hill and J. A. Wheeler, Phys. Rev.,89, 1140 (1953)].Google Scholar
  60. 60.
    I. Bigeleisen, Proceedings of International Symposium on Isotope Separation, Amsterdam, 1958, p. 148.Google Scholar
  61. 61.
    C. Eckart, Phys. Rev., 35, 1303 (1930).CrossRefGoogle Scholar
  62. 62.
    H. S. Johnston and D. Rapp, J. Am. Chem. Soc., 83, 1 (1961).CrossRefGoogle Scholar
  63. 63.
    T. E. Sharp and H. S. Johnston, J. Chem. Phys., 37, 1541 (1962).CrossRefGoogle Scholar
  64. 64.
    H. S. Johnston and J. Heicklen, J. Phys. Chem., 66, 532 (1962).CrossRefGoogle Scholar
  65. 65.
    H. Shin, J. Chem. Phys., 39, 2934 (1963).CrossRefGoogle Scholar
  66. 66.
    R. J. Le Roy, K. A. Quickert, and D. J. Le Roy, Trans. Faraday Soc., 66, 2997 (1970).CrossRefGoogle Scholar
  67. 67.
    E. M. Mortensen and K. S. Pitzer, Chem. Soc. Special Publ. No. 16, 57 (1962).Google Scholar
  68. 68.
    E. M. Mortensen, J. Chem. Phys., 48, 4029 (1968); 49, 3526 (1968).Google Scholar
  69. 69.
    D. G. Truhlar and A. Kuppermann, J. Chem. Phys., 52, 3841 (1970); Chem. Phys. Letters, 9, 269 (1971).Google Scholar
  70. 70.
    J. R. Hulett, Chem. Soc. Quart. Rev., 18, 227 (1964).CrossRefGoogle Scholar
  71. 71.
    E. F. Caldin and E. Harbron, J. Chem. Soc., 3454 (1962).Google Scholar
  72. 72.
    E. F. Caldin and M. Kasparian, Disc. Faraday Soc., 39, 25 (1965).CrossRefGoogle Scholar
  73. 73.
    E. F. Caldin, M. Kasparian, and G. Tomalin, Trans. Faraday Soc., 64, 2823 (1968).CrossRefGoogle Scholar
  74. 74.
    R. P. Bell, J. A. Fendley, and J. R. Hulett, Proc. Roy. Soc., A, 235, 453 (1956).CrossRefGoogle Scholar
  75. 75.
    J. R. Jones, Trans. Faraday Soc., 65, 2430 (1969).CrossRefGoogle Scholar
  76. 76.
    V. J. Shiner and M. L. Smith, J. Am. Chem. Soc., 83, 593 (1961).CrossRefGoogle Scholar
  77. 77.
    V. J. Shiner and B. Martin, Pure Appl. Chem., 8, 371 (1964).CrossRefGoogle Scholar
  78. 78.
    J. R. Jones, R. E. Marks, and S. C. Subba Rao, Trans. Faraday Soc., 63, 993 (1967).CrossRefGoogle Scholar
  79. 79.
    E. F. Caldin and G. Tomalin, Trans. Faraday Soc., 64, 2814, 2823 (1968).CrossRefGoogle Scholar
  80. 80.
    R. P. Bell, Proc. Roy..Soc., A, 148, 241 (1935).CrossRefGoogle Scholar
  81. 81.
    J. J. Weiss, J. Chem. Phys., 41, 1120 (1964).CrossRefGoogle Scholar
  82. 82.
    J. R. Jones, Trans. Faraday Soc., 65, 2138 (1969).CrossRefGoogle Scholar
  83. 83.
    R. Stewart and R. van der Linden, Disc. Faraday Soc., 29, 211 (1960).CrossRefGoogle Scholar
  84. 84.
    R. Stewart and D. G. Lee, Canad. J. Chem., 42, 439 (1964).CrossRefGoogle Scholar
  85. 85.
    R. Stewart and M. M. Mocek, Canad. J. Chem., 41, 1161 (1963).Google Scholar
  86. 86.
    E. S. Lewis, J. M. Perry, and R. H. Grinstein, J. Am. Chem. Soc., 92, 899 (1970).Google Scholar
  87. 87.
    P. Krumbiegel, Z. Chem., 8, 328 (1968).CrossRefGoogle Scholar
  88. 88.
    S. Rummel and H. Huebner, Z. Chem., 9, 150 (1969).CrossRefGoogle Scholar
  89. 89.
    C. Lifshitz and G. Stein, J. Chem. Soc., 3706 (1962).Google Scholar
  90. 90.
    M. Simonyi and F. Tiidos, Adv. Phys. Org. Chem., 9, 127 (1970).CrossRefGoogle Scholar
  91. 91.
    L. N. Shishkina and I. V. Berezin, Zh. Fiz. Khim., 39, 2547 (1965); Russ. J. Phys. Chem., 39, 1357 (1965).Google Scholar
  92. 92.
    V. L. Antonovskii and I. V. Berezin, Zh. Fiz. Khim., 34, 1286 (1960).Google Scholar
  93. 93.
    A. Bromberg, K. A. Muszkat, and E. Fischer, Chem. Comm., 1352 (1968).Google Scholar
  94. 94.
    A. Bromberg and K. A. Muszkat, J. Am. Chem. Soc., 91, 2860 (1969).CrossRefGoogle Scholar
  95. 95.
    A. Warshel and A. Bromberg J. Chem. Phys., 52, 1262 (1970).CrossRefGoogle Scholar
  96. 96.
    A. Bromberg, K. A. Muszkat, and A. Warshel, J. Chem. Phys., 52, 5952 (1970).CrossRefGoogle Scholar
  97. 97.
    A. Bromberg, K. A. Muszkat, E. Fischer, and F. S. Klein, J. Chem. Soc., Perk. Trans. II, 588 (1972).Google Scholar
  98. 98.
    Unpublished calculations by R. L. Tranter, and by M. J. Stern.Google Scholar
  99. 99.
    E. D. Sprague and F. Williams, J. Am. Chem. Soc., 93, 787 (1971).CrossRefGoogle Scholar
  100. 100.
    R. J. Le Roy, E. D. Sprague, and F. Williams, J. Phys. Chem., 76, 546 (1972).CrossRefGoogle Scholar
  101. 101.
    M. H. J. Wijnen, J. Chem. Phys., 22, 1074 (1954).CrossRefGoogle Scholar
  102. 102.
    C. A. Parr and D. G. Truhlar, J. Phys. Chem., 75, 1844 (1971).CrossRefGoogle Scholar
  103. 103.
    W. R. Schulz and D. J. Le Roy, Canad. J. Chem., 42, 2480 (1964); J. Chem. Phys., 42, 3869 (1965).Google Scholar
  104. 104.
    B. A. Ridley, W. R. Schulz, and D. J. Le Roy, J. Chem. Phys., 44, 3344 (1966).CrossRefGoogle Scholar
  105. 105.
    D. J. Le Roy, B. A. Ridley, and K. A. Quickert, Disc. Faraday Soc., 44, 97 (1967).CrossRefGoogle Scholar
  106. 106.
    A. A. Westenburg and N. de Haas, J. Chem. Phys., 47, 1393 (1967).CrossRefGoogle Scholar
  107. 107.
    I. Shavitt, J. Chem. Phys., 49, 4048 (1968).CrossRefGoogle Scholar
  108. 108.
    K. A. Quickert and D. J. Le Roy, J. Chem. Phys., 53, 1325 (1970).CrossRefGoogle Scholar
  109. 109.
    J. Bigeleisen, F. S. Klein, R. E. Weston, and M. Wolfsberg, J. Chem. Phys., 30, 1340 (1959).CrossRefGoogle Scholar
  110. 110.
    A. Persky and F. S. Klein, J. Chem. Phys., 44, 3617 (1966).CrossRefGoogle Scholar
  111. 111.
    T. E. Sharp and H. S. Johnston, J. Chem. Phys., 37, 1541 (1962).CrossRefGoogle Scholar
  112. 112.
    H. S. Johnston and E. Tschuikow-Roux, J. Chem. Phys., 36, 463 (1962).CrossRefGoogle Scholar
  113. 113.
    H. S. Johnston, Adv. Chem. Phys., 3, 131 (1961).CrossRefGoogle Scholar
  114. 114.
    J. S. Shapiro and R. E. Weston, J. Phys. Chem., 76, 1669 (1972).CrossRefGoogle Scholar
  115. 115.
    C. L. Kibby and R. E. Weston, J. Chem. Phys., 49, 1193 (1968).CrossRefGoogle Scholar
  116. 116.
    For a review, see P. M. Laughton and R. E. Robertson in Solute-Solvent Interactions (ed. J. F. Coetzee and C. D. Ritchie ), Dekker, New York, 1969.Google Scholar
  117. 117.
    For references, and a review of other mechanistic evidence, see E. H. Cordes, Progr. Phys. Org. Chem., 4, 1 (1967).Google Scholar
  118. 118.
    J. G. Pritchard and F. A. Long, J. Am. Chem. Soc., 78, 6008 (1956).CrossRefGoogle Scholar
  119. 119.
    P Gross, H. Steiner, and F. Krauss, Trans. Faraday Soc., 34, 351 (1938).CrossRefGoogle Scholar
  120. 120.
    W J. Albery and M. H. Davies, Trans. Faraday Soc., 65, 1066 (1969).CrossRefGoogle Scholar
  121. 121.
    T. Riley and F. A. Long, J. Am. Chem. Soc., 84, 522 (1962).CrossRefGoogle Scholar
  122. 122.
    P. Salomaa, A. Kankaanperä, and M. Lajunen, Acta Chem. Scand., 20, 1790 (1966). A. J. Kresge and Y. Chiang, J. Chem. Soc., B, 58 (1967): M. M. Kreevoy and R. Eliason, J. Phys. Chem., 72, 1313 (1968).Google Scholar
  123. 123.
    For a summary, see J. M. Williams and M. M. Kreevoy, Adv. Phys. Org. Chem., 6, 63 (1968).CrossRefGoogle Scholar
  124. 124.
    H. Dahn and M. Ballenegger, Hely. Chico. Acta, 52, 2417 (1952).CrossRefGoogle Scholar
  125. 125.
    V. Gold and D. C. A. Waterman, J. Chem. Soc., B, 839 (1968).Google Scholar
  126. 126.
    M. M. Kreevoy and R. A. Kretchmer, J. Am. Chem. Soc., 86, 2435 (1964); V. Gold and M. A. Kessick, Pure Appl. Chem., 8, 273 (1964); Proc. Chem. Soc., 295 (1964).Google Scholar
  127. 127.
    V. Gold and M. A. Kessick, Disc. Faraday Soc., 39, 84 (1965); J. Chem. Soc., 6718 (1965).Google Scholar
  128. 128.
    A. J. Kresge, Pure Appt. Chem., 8, 243 (1964).CrossRefGoogle Scholar
  129. 129.
    V. Gold and D. C. A. Waterman, J. Chem. Soc., B, 839 (1968).Google Scholar
  130. 130.
    J. C. Simandoux, B. Torck, M. Hellin, and F. Coussemant, Tetrahedron Letters, No. 31, 2971 (1967).CrossRefGoogle Scholar
  131. 131.
    M. M. Kreevoy and R. Eliason, J. Phys. Chem., 72, 1313 (1968).CrossRefGoogle Scholar
  132. 132.
    H. Dahn and G. Diderich, Heiy. Chim. Acta, 54, 1950 (1971); G. Diderich and H. Dahn, Hely. Chim. Acta, 55, 1 (1972).Google Scholar
  133. 133.
    V. Gold and B. M. Lowe, J. Chem. Soc., A, 1923 (1968).Google Scholar
  134. 134.
    D. M. Goodall and F. A. Long, J. Am. Chem. Soc., 90, 238 (1968).CrossRefGoogle Scholar

Copyright information

© R. P. Bell 1973

Authors and Affiliations

  • R. P. Bell
    • 1
  1. 1.University of StirlingScotland

Personalised recommendations