Mössbauer Spectrometry of Hemoglobin: Paramagnetic Effects

  • George Lang
  • Walter Marshall
Conference paper

Abstract

Hemoglobin and its prosthetic group, heme, have been the objects of a number of recent Mössbauer spectrometry studies [1, 2, 3, 4, 5]. In addition to being of considerable biological interest, hemoglobin is also a convenient host material for the study of dilute systems of paramagnetic iron ions. The hemoglobin molecule is made up of four subunits, each of which consists of the iron—protoporphyrin compound heme imbedded in the protein globin. The iron lies approximately in the heme plane (see Fig. 1) and is attached below the plane to one of the globin histidines. In the region above the iron, various molecules or ions may be placed, giving rise to a number of hemoglobin compounds.

Keywords

Electron Spin Quadrupole Interaction Magnetic Hyperfine Hemoglobin Molecule Quadrupole Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Gonser, R. W. Grant, and J. Kregzde, Appl. Phys. Letters 3: 189–91 (1963).CrossRefGoogle Scholar
  2. 2.
    U. Gonser, R. W. Grant, and J. Kregzde, Science 143: 680–681 (1964).CrossRefGoogle Scholar
  3. 3.
    W. Karger, Ber. Bunsen Ges. Physik. Chem. 68: 793 (1964).Google Scholar
  4. 4.
    Alan J. Bearden, Thomas H. Moss, Winslow S. Caughey, and A. Beardreau, Proc. Nat. Acad. Sci. (U.S.) 53: 1246 (1965).CrossRefGoogle Scholar
  5. 5.
    George Lang and Walter Marshall, Proc. Phys. Soc. (London) 87:3 (1966).Google Scholar
  6. 6.
    T. E. Cranshaw, Nucl. Instr. Methods 30: 101–105 (1964).Google Scholar
  7. 7.
    J. S. Griffith, Proc. Roy. Soc. (London) A235: 23 (1956).Google Scholar
  8. 8.
    J. S. Griffith, Nature 180: 30 (1957).CrossRefGoogle Scholar
  9. 9.
    J. S. Griffith, Discussions Faraday Soc. 26: 81 (1958).CrossRefGoogle Scholar
  10. 10.
    L. E. Orgel, I.U.B. Symp. Ser. 19: 1 (1961).Google Scholar
  11. 11.
    P. George, J. Beatlestone, and J. S. Griffith, Rev. Mod. Phys. 36: 441 (1964).CrossRefGoogle Scholar
  12. 12.
    J. E. Bennett and J. E. Ingram, Discussions Faraday Soc. 19: 140 (1955).CrossRefGoogle Scholar
  13. 13.
    J. E. Bennett and J. E. Ingram, Nature 177: 275 (1956).CrossRefGoogle Scholar
  14. 14.
    J. E. Bennett, J. F. Gibson, and J. E. Ingram, Proc. Roy. Soc. (London) A240: 67 (1957).CrossRefGoogle Scholar
  15. 15.
    J. F. Gibson and D. J. E. Ingram, Nature 178: 905 (1957).Google Scholar
  16. 16.
    J. F. Gibson, D. J. E. Ingram, and D. Schonland, Discussions Faraday Soc. 26: 72 (1958).CrossRefGoogle Scholar
  17. 17.
    D. J. E. Ingram, J. F. Gibson and M. F. Perutz, Nature 178: 906 (1956).CrossRefGoogle Scholar
  18. 18.
    D. J. E. Ingram and J. C. Kendrew, Nature 178: 905 (1957).CrossRefGoogle Scholar
  19. 19.
    E. F. Hartree, Ann. Rept. Progr. Chem. (Chem. Soc. London) 43: 287 (1946).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • George Lang
    • 1
  • Walter Marshall
    • 2
  1. 1.Physics DepartmentCarnegie Institute of TechnologyPittsburghUSA
  2. 2.Theoretical Physics DivisionA.E.R.E., HarwellDidcot, BerksEngland

Personalised recommendations