Mössbauer Effect Methodology pp 39-66 | Cite as
Mössbauer Paramagnetic Hyperfine Structure
Abstract
The use of the Mössbauer technique as a solid-state tool is inherently concerned with the nature of the electric and magnetic interactions experienced by the emitting or absorbing recoil-free atom. Indeed, the majority of Mössbauer studies have centered around investigations of electric and magnetic hyperfine interactions and the electron—nuclear interaction leading to the isomer shift. Until recently, most studies of this type have involved systems in which the time-independent features of the hyperfine interactions were emphasized, and the observed electronic fields given a simple classical interpretation. The prime example here is, of course, the effective internal magnetic field found in magnetically ordered compounds.
Keywords
Hyperfine Interaction Electric Field Gradient Relaxation Effect Hyperfine Field Relaxation SpectrumPreview
Unable to display preview. Download preview PDF.
References
- 1.A. J. F. Boyle and H. E. Hall, Rept. Progr. Phys. 25: 441 (1962).CrossRefGoogle Scholar
- 2.A. Abragam and R. V. Pound, Phys. Rev. 92: 943 (1953).CrossRefGoogle Scholar
- 3.A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, London, 1961 ).Google Scholar
- 4.A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London) A205: 135 (1951).CrossRefGoogle Scholar
- 5.J. A. Pople, W. G. Schneider, and H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance (McGraw-Hill Book Company, New York, 1959 ).Google Scholar
- 6.H. S. Gutowsky, R. L. Vold and E. J. Wells, J. Chem. Phys. 43:4107 (1965) and citations therein.Google Scholar
- 7.G. K. Wertheim and J. P. Remeika, Phys. Letters 10:14 (1964); Proc.)(filth Colloque Ampère, ( North Holland Publishing Company, Amsterdam, 1965 ), p. 147.Google Scholar
- 8.C. R. Kurkjian and D. N. E. Buchanan, Phys. Chem. Glasses 5: 63 (1964).Google Scholar
- 9.G. Lang and W. Marshall, Proc. Phys. Soc. (London) 87: 3 (1966).CrossRefGoogle Scholar
- 10.F. E. Obenshain, L. D. Roberts, C. F. Coleman, D. W. Forester, and J. O. Thomson, Phys. Rev. Letters 14: 365 (1965).CrossRefGoogle Scholar
- 11.S. Ofer, B. Khurgin, M. Rakavy, and I. Nowik, Phys. Letters 11: 205 (1964).CrossRefGoogle Scholar
- 12.R. L. Cohen, Phys. Rev. 137: A1809 (1965).CrossRefGoogle Scholar
- 13.H. Dobler, G. Petrich, S. Hüfner, P. Kienle, W. Wiedeman, and H. Eicher, Phys. Letters 10: 319 (1964).CrossRefGoogle Scholar
- 14.A. Hillier, W. Wiedeman, P. Kienle, and S. Hüfner, Phys. Letters 15: 269 (1965).CrossRefGoogle Scholar
- 15.M. J. Clauser, E. Kankeleit, and R. L. Mössbauer, Bull. Am. Phys. Soc. 10: 1202 (1965).Google Scholar
- 16.H. H. Wickman and G. K. Wertheim, in Chemical Applications of the Mössbauer Effect, edited by V. Goldanskii and R. H. Herber, Chap. 11.Google Scholar
- 17.A. J. Freeman and R. E. Watson, in Magnetism,Vol. IIA, edited by G. T. Rado and H. Suhl (Academic Press Inc., New York, 1965), Chap. 4.Google Scholar
- 18.H. H. Wickman and I. Nowik, Phys. Rev. 142: 115 (1966).CrossRefGoogle Scholar
- 19.R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London) A218: 553 (1953).CrossRefGoogle Scholar
- 20.W. Low, Paramagnetic Resonance in Solids (Academic Press Inc., New York, 1960 ).Google Scholar
- 21.H. H. Wickman and G. K. Wertheim, Phys. Rev. 148: 211 (1966).CrossRefGoogle Scholar
- 22.A. M. Afans’ev and Yu Kagan, Zh. Eksperim. i Teor. Fiz. 45:1660 (1963) [Soviet Phys. JET? (English Trans!) 18:1139 (1964)].Google Scholar
- 23.P. W. Anderson and P. R. Weiss. Rev. Mod. Phys. 25: 269 (1953).CrossRefGoogle Scholar
- 24.P. W. Anderson, J. Phys. Soc. Japan 9: 316 (1954).CrossRefGoogle Scholar
- 25.M. Blume, Phys. Rev. Letters 14: 96 (1965).CrossRefGoogle Scholar
- 26.F. Van der Woude and A. J. Dekker, Phys. stat. sol. 9: 775 (1965).CrossRefGoogle Scholar
- 27.F. Van der Woude and A. J. Dekker, Solid State Comm. 3: 319 (1965).CrossRefGoogle Scholar
- 28.A. J. F. Boyle and J. R. Gabriel, Phys. Letters 19: 451 (1966).CrossRefGoogle Scholar
- 29.J. G. Dash and B. D. Dunlap, Bull. Am. Phys. Soc. 11: 48 (1966).Google Scholar
- 30.H. Wegener, Z. Physik 186: 498 (1965).CrossRefGoogle Scholar
- 31.E. Bradford and W. Marshall, Proc. Phys. Soc. (London) 87: 731 (1966).CrossRefGoogle Scholar
- 32.R. Kubo and K. J. Tomita, J. Phys. Soc. Japan 9: 888 (1954).CrossRefGoogle Scholar
- 33.H. S. Gutowsky, D. W. McCall and C. P. Slichter, J. Chem. Phys. 21: 279 (1953).CrossRefGoogle Scholar
- 34.E. L. Hahn and D. E. Maxwell, Phys. Rev. 88: 1070 (1952).CrossRefGoogle Scholar
- 35.H. M. McConnell, J. Chem. Phys. 28: 430 (1958).CrossRefGoogle Scholar
- 36.H. H. Wickman, M. P. Klein, and D. A. Shirley, Bull. Am. Phys. Soc. 10:57 (1965); for details see H. H. Wickman, unpublished Ph.D. thesis ( University of California, Berkeley, 1964 ).Google Scholar
- 37.H. H. Wickman and A. M. Trozzolo, Phys. Rev. Letters 15:156 (1965); Erratum, ibid., 16: 162 (1966).CrossRefGoogle Scholar
- 38.R. K. Wangness and F. Bloch, Phys. Rev. 89: 728 (1953).CrossRefGoogle Scholar
- 39.A. G. Redfield, IBM J. Res. Develop. 1:19 (1957).CrossRefGoogle Scholar
- 40.H. H. Wickman, M. P. Klein, and D. A. Shirley, Phys. Rev.,in press.Google Scholar
- 41.H. H. Wickman and I. Nowik, Bull. Am. Phys. Soc. 11: 268 (1966).Google Scholar
- 42.J. A. Pople, Mol. Phys. 1: 168 (1958).CrossRefGoogle Scholar
- 43.I. Nowik and H. H. Wickman, Phys. Rev. 140: A869 (1965).CrossRefGoogle Scholar