An Operator Calculus Based on The Cauchy—Green Formula, and the Quasi Analyticity of the Classes D(h)

  • E. M. Dyn’kin
Part of the Seminars in Mathematics book series (SM)


The classical Riesz-Dunford operator calculus (see, e.g., [1]) defines f (T) only for functions analytic in a neighborhood of the spectrum & (T) of the operator T. For operators with a unitary spectrum another familiar example is the calculus of Wermer [2].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Dunford, N., and Schwartz, J. T., Linear Operators, Vol. 1: General Theory, Interscience, New York (1958).Google Scholar
  2. 2.
    Wermer, J., The existence of invariant subspaces, Duke Math. J., 19 (4): 615 - 622 (1952).Google Scholar
  3. 3.
    Lyubich, Yu. I., and Matsaev, V. I., On operators with a divisible spectrum, Matem. Sborn., 56(98) (4): 533 - 468 (1962).Google Scholar
  4. 4.
    Levinson, N., Gap and Density Theorems (AMS Colloquium Publications, No. 26), American Mathematical Society, Providence, R. L (1940).Google Scholar
  5. 5.
    Gurarii, V. P. On Levinsons theorem concerning normal families of analytic functions, this volume, p. 124,Google Scholar
  6. 6.
    Domar, Y., On the existence of a largest subharmonic minorant of a given function, Arkiv Mat., 3 (5): 429 - 440 (1958).CrossRefGoogle Scholar
  7. 7.
    Maeda, F., Generalized unitary operators, Bull. Amer. Math. Soc., 74 (4): 631 - 633 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • E. M. Dyn’kin

There are no affiliations available

Personalised recommendations