A Decomposition Theorem for the Translation-Invariant Subspace of a Canonical Differential Operator

  • M. V. Buslaeva
Part of the Seminars in Mathematics book series (SM)


Let H be a unitary space of even dimension 2 m, and let y be a linear operator in H for which y* = − y, y2 = − I. The orthogonal projectors P± = 1/2. (I ± i y) define two subspaces H+ and H in H. We shall assume that H+. = dim H = m. We denote by H0 a certain subspace in H of dimension m, whose elements satisfy the relation (y f, g) = 0, f, g ∈ H0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Adamyan, V. M., Dokl. Akad. Nauk SSSR, Vol, 178, No. 1 (1969).Google Scholar
  2. 2.
    Lax, P. D., and Phillips, R. S., Scattering Theory, Academic Press (1967).Google Scholar
  3. 3.
    Nikol’skii, N. K., and Pavlov, B. S., Dokl. Akad. Nauk SSSR, Vol. 184, No. 3 (1969).Google Scholar
  4. 4.
    Zak, M. V., Vestnik Leningrad. Univ. (LGU), 19 (4) (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • M. V. Buslaeva

There are no affiliations available

Personalised recommendations