Advertisement

Nonstandard Ideals, Unicellularity, and Algebras Associated with a Shift Operator

  • N. K. Nikol’skii
Part of the Seminars in Mathematics book series (SM)

Abstract

The shift operator in sequence spaces, its invariant subspaces, and applications of the latter have formed the topic of a host of papers, beginning with the earliest studies of Shilov [1], Beurling [2], and Donoghue [3] and extending up to the fundamental monographs [4, 5] and other recently published works [6–17], which we shall presently discuss in further detail. As the title of our article suggests, we propose to amplify on the problem (see [8, 10, 11]) of the unicellularity of the weighted shift operators and its algebraic treatment. Many of the propositions proved below have been announced in [11] or the shorter communication [18], and some others are contained in [9] as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Shilov, G. E., On regular normed rings, Trudy Matem. Inst. Steklov., 21 (1947).Google Scholar
  2. 2.
    Beurling, A. On two problems concerning linear transformations in Hilbert spaces, Acta Math., 81 (1–2): 239–255 (1949).CrossRefGoogle Scholar
  3. 3.
    Donoghue, W. F., The lattice of invariant subspaces of a completely continuous quasinilpotent transformation, Pacific J. Math., 7 (2): 1031–1036 (1957).CrossRefGoogle Scholar
  4. 4.
    Helson, H., Lectures on Invariant Subspaces, Academic Press (1964).Google Scholar
  5. 5.
    Nagy, B. Sz.-, and Foias, C., Analyse Harmonique des Operateurs de l’Espace de Hilbert, Budapest (1967).Google Scholar
  6. 6.
    Duren, P. L., Extension of a result of Beurling on invariant subspaces, Trans. Amer. Math. Soc., 99 (2): 320–324 (1961).CrossRefGoogle Scholar
  7. 7.
    Freeman, J. B., Perturbations of the shift operators, Trans. Amer. Math. Soc., 114: 251–260 (1965).CrossRefGoogle Scholar
  8. 8.
    Nikol’skii, N. K., Invariant subspaces of certain completely continuous operators, Vestnik Leningrad. Univ. (LGU), Ser. Matem. Mekh. Astron., 7 (2): 68–77 (1965).Google Scholar
  9. 9.
    Nikol’skii, N. K., Invariant Subspaces of the Shift Operator in Certain Sequence Spaces, Dissertation, LGU (1966).Google Scholar
  10. 10.
    Nikol’skii, N. K., On invariant subspaces of the weighted shift operators, Matem. Sborn., 74 (116) (2): 171–190 (1967).Google Scholar
  11. 11.
    Nikol’skii, N. K., Basicity and unicellularity of the weighted shift operators, Izd. Akad. Nauk SSSR, Ser. Matem., 32: 1123–1137 (1968).Google Scholar
  12. 12.
    Gellar, R., Shift Operators in Banach Space, Dissertation, Columbia Univ. (1968).Google Scholar
  13. 13.
    Gellar, R., Weighted shifts, I: Simple invariant subspaces, Not. Amer. Math. Soc., 15(2):397 (1968); II: Cyclic vectors of the backward shift, Not. Amer. Math. Soc., 15 (3): 501 (1968).Google Scholar
  14. 14.
    Nordgreen, E. A., Invariant subspaces of a direct sum of weighted shifts, Pacific J. Math., 27 (3): 587–598 (1968).CrossRefGoogle Scholar
  15. 15.
    Nordgreen, E. A., Closed Operators Commuting with a Weighted Shift (preprint).Google Scholar
  16. 16.
    Bouldin, R. H., A note on power bounded operators, Not. Amer. Math. Soc., 16 (7): 1047 (1969).Google Scholar
  17. 17.
    Nordgreen, E. A., Radjavi, H., and Rosenthal, P., On the density of transitive algebras, Acta Sci. Math., 30 (3–4): 175–180 (1969).Google Scholar
  18. 18.
    Nikol’skii, N. K., Spectral synthesis for the shift operator and zeros in certain classes of analytic functions smooth to the boundary, Dokl. Akad. Nauk SSSR, 190 (4): 780–783 (1970).Google Scholar
  19. 19.
    Gokhberg, L Ts., and Krein, M. G., Theory of Volterra Operators in Hilbert Space and Its Applications, Nauka (1967).Google Scholar
  20. 20.
    Nikol’skii, N. K., Invariant subspaces and bases of primitives in the sense of A. O. Gel’fond and A. F. Leont’ev, in: Mathematical Studies, Vol. 3, No. 3, Kishinev (1968).Google Scholar
  21. 21.
    Domar, Y., Closed primary ideals in a class of Banach algebras, Math. Scand., 7 (1): 109–125 (1959).Google Scholar
  22. 22.
    Mergelyan, S. N., Weighted approximations by polynomials, Usp. Mathem. Nauk, 11 [5 (71)]: 107–152 (1956).Google Scholar
  23. 23.
    Koosis, P. J., Sur l’approximation pondérée par des polynomes et par des sommes d’exponentielles imaginaires, Ann. Sci. Ec. Norm. Sup., Ser. 3, 81: 387–409 (1964).Google Scholar
  24. 24.
    Gurarii, V. P., Structure of primary ideals in the ring of functions integrable with increasing weight on a semiaxis, Dokl. Akad. Nauk SSSR, 178 (5): 991–994 (1968).Google Scholar
  25. 25.
    Gurarii, V. P., Harmonic Analysis of Bounded and Growing Functions, Doctoral Dissertation, Kharkov. Univ. (KhGU ) (1969).Google Scholar
  26. 26.
    Smirnov, V. L, and Lebedev, N. A., Constructive Theory of Functions of a Complex Variable, Nauka (1964).Google Scholar
  27. 27.
    Gokhberg, I. Ts., and Soibel’man, O. I., Remarks on operator similarity, in: Mathematical Studies, Vol. 2, No. 3, Kishinev (1967), pp. 166–170.Google Scholar
  28. 28.
    Kaz’min, Yu. A., Completeness of certain types of sequences of analytic functions, Sibirsk. Matem. Zh., 7 (1): 70–82 (1966).Google Scholar
  29. 29.
    Fishman, K. M., and Sas’ko, G. M., On certain systems of functions forming quasi-power bases in spaces of analytic functions in a disk, Dokl. Akad. Nauk SSSR, L46 (2) (1962).Google Scholar
  30. 30.
    Evgrafov, M. A., The method of proximate systems in a space of analytic functions and its application to the problem of interpolation, Trudy Moskovsk. Matem. Obshch., 5: 90–200 (1956).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • N. K. Nikol’skii

There are no affiliations available

Personalised recommendations