Advertisement

Multiple Shift Operator with Simple Spectrum

  • N. K. Nikol’skii
Chapter
Part of the Seminars in Mathematics book series (SM)

Abstract

In this note we consider the spectrum multiplicity and operator cyclicity problems for operators of the form U × U × ... × U, where U is the (bilateral) shift operator in a certain sequence space X. Necessary and sufficient conditions for simplicity of the spectrum are obtained which are close to one another and coincide in many important spaces (lp, Orlicz, etc.). These hypotheses are closely allied with the possible realization of X by measurable functions and functions having singular measures with limiting rate of decrease of the Fourier coefficients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Gokhberg, I. Ts., and Krein, M. G., Theory of Volterra Operators in Hilbert Space and Applications, Nauka (1967).Google Scholar
  2. 2.
    Akhiezer, N. I., and Glazman, I. M., Theory of Linear Operators in Hilbert Space, Nauka (1966).Google Scholar
  3. 3.
    Nagy, B. Sz.-, and Foias, C., Operateurs sans multiplicite, Acta Sci. Math., 30 (1–2): 1–18 (1969).Google Scholar
  4. 4.
    Helson, H., Lectures on Invariant Subspaces, Academic Press (1964).Google Scholar
  5. 5.
    Newman, D. J., The closure of translates in IP, Amer. J. Math., 83: 651–667 (1964).CrossRefGoogle Scholar
  6. 6.
    Nikol’skii, N. K., Invariant subspaces of a shift operator and bounded approximation almost everywhere, Trudy Matem. Inst. Steklov., 96: 243–257 (1968).Google Scholar
  7. 7.
    Plesner, A. I., Spectral Theory of Linear Operators, Nauka (1965).Google Scholar
  8. 8.
    Shilov, G. E., Mathematical Analysis, Fizmatgiz (1961).Google Scholar
  9. 9.
    Semenov, E. M., Interpolation of linear operators in symmetric spaces, Dokl. Akad. Nauk SSSR, 164 (4): 746–749 (1965).Google Scholar
  10. 10.
    Semenov, E. M., Interpolation of Linear Operators in Symmetric Spaces, Dissertation, Voronezh. Univ. (VGU ) (1968).Google Scholar
  11. 11.
    Krasnosel’skii, M. A., and Rutitskii, Ya. B., Convex Functions and Orlicz Spaces, Fizmatgiz (1958).Google Scholar
  12. 12.
    Kahane, J. P., and Salem, R., Ensembles Parfaites et Series Trigonometriques, Paris (1963).Google Scholar
  13. 13.
    Ivashev-Musatov, O. S., On the coefficients of trigonometric null series, Izv. Akad. Nauk, Ser. Matem., 21 (4): 559–578 (1957).Google Scholar
  14. 14.
    Hormander, L., Estimates for translation-invariant operators in zP spaces, Acta Math., 104: 93140 (1960).CrossRefGoogle Scholar
  15. 15.
    Nikol’skii, N. K., On spaces and algebras of Toeplitz matrices acting in 1P, Sibirsk. Matem. Zh., 7 (1): 146–158 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • N. K. Nikol’skii

There are no affiliations available

Personalised recommendations