Observable Manifestations of Invariance in Condensed Matter and Biological Systems

  • Giuseppe Vitiello

Abstract

Ordered patterns, low energy theorems, extended objects as bags, vortices, dislocations, etc. are described as observable manifestations of the dynamical rearrangement of the theory invariance. In spontaneously broken symmetry theories a preminent role is played by Inönü-Wigner group contraction which determines the symmetry group relevant to the observations in condensed matter physics as well as in biological systems.

Keywords

Solitary Wave Goldstone Mode Nonlinear Electrodynamic Group Contraction Spontaneous Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. van Hove, Physica 18, 145 (1952).CrossRefGoogle Scholar
  2. K. O. Friedrichs. Friedrichs,“Mathematical Aspects of the Quantum Theory of Fields”, Interscience Publishers (1953).Google Scholar
  3. 2.
    H. Matsumoto, M. Tachiki and H. Umezawa, “Thermo-field Dynamics and Condensed States,” North-Holland, Amsterdam (1982).Google Scholar
  4. 3.
    N. N. Bogoliubov, A. A. Logunov, I. T. Todorov, “Introduction to Axiomatic Quantum Field Theory”, Benjamin, Cumming (1975).Google Scholar
  5. 4.
    J. Goldstone, Nuovo Cimento 19, 154 (1961).CrossRefGoogle Scholar
  6. J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962).CrossRefGoogle Scholar
  7. 5.
    C. De Concini and G. Vitiello, Nucl. Phys. B116, 141 (1976).CrossRefGoogle Scholar
  8. 6.
    C. De Concini and G. Vitiello, Phys. Lett. 70B, 355 (1977).Google Scholar
  9. 7.
    E. Inönü and E. P. Wigner, Proc. Nat. Acad. Sci. US 39, 510 (1953).CrossRefGoogle Scholar
  10. I. E. Segal, Duke Math. J. 18, 221 (1953).Google Scholar
  11. 8.
    H. Matsumoto, N. J. Papastamatiou and H. Umezawa, Phys. Rev. D13, 1054 (1976).Google Scholar
  12. M. Hongoh, H. Matsumoto and H. Umezawa, Prog. Theor. Phys. 65, 315 (1981).CrossRefGoogle Scholar
  13. 9.
    H. Matsumoto, H. Umezawa, G. Vitiello and J. K. Wyly, Phys. Rev. D9, 2806 (1974).CrossRefGoogle Scholar
  14. 10.
    M. N. Shah, H. Umezawa and G. Vitiello, Phys. Rev. B10, 4724 (1974).CrossRefGoogle Scholar
  15. 11.
    E. Celeghini, P. Magnollay, M. Tarlini and G. Vitiello, Phys. Lett. 162B, 133 (1985).Google Scholar
  16. 12.
    E. Celeghini, M. Tarlini and G. Vitiello, Relation between Group Contraction and Nonlinear Realizations, in Proc. XXI Winter School in Theoretical Physics, Karpacz, Poland, 1985, eds. L. Michel and J. Mozrzymas, World Scient. Publisher, 1985.Google Scholar
  17. 13.
    S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2239 (1969).CrossRefGoogle Scholar
  18. C. G. Callan Jr., S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2247 (1969).CrossRefGoogle Scholar
  19. 14.
    S. L. Adler, Phys. Rev. 137B, 1022 (1965); 139B, 1638 (1965).Google Scholar
  20. 15.
    F. J. Dyson, Phys. Rev. 102, 1217 (1956).CrossRefGoogle Scholar
  21. 16.
    Y. Fujimoto and N. J. Papastamatiou, Nuovo Cimento 40A, 468 (1977); 48A, 24 (1978).CrossRefGoogle Scholar
  22. 17.
    P. W. Anderson, Phys. Rev. 110, 827 (1966).CrossRefGoogle Scholar
  23. P. W. Higgs, Phys. Rev. 145, 1156 (1966).CrossRefGoogle Scholar
  24. T. W. Kibble, Phys. Rev. 155, 1554 (1967).CrossRefGoogle Scholar
  25. 18.
    H. Matsumoto, N. J. Papastamatiou, H. Umezawa and G. Vitiello, Nucl. Phys. B97, 61 (1975).CrossRefGoogle Scholar
  26. 19.
    T. Kugo and I. Ojima, Prog. Theor. Phys. 61, 294 (1979).CrossRefGoogle Scholar
  27. 20.
    G. Vitiello, Phys. Lett. 58A, 293 (1976).CrossRefGoogle Scholar
  28. 21.
    J. Joos and E. Weimar, Nuovo Cimento 32A, 283 (1976).CrossRefGoogle Scholar
  29. 22.
    E. Weimar, Acta Phys. Austriaca 48, 201 (1978).Google Scholar
  30. 23.
    E. Celeghini, M. Tarlini and G. Vitiello, Nuovo Cimento 84A, 19 (1984).Google Scholar
  31. 24.
    E. Del Giudice, S. Doglia, M. Milani and G. Vitiello, Phys. Lett. 95A, 508 (1983); Nucl. Phys. 251B [FS 131, 375 (1985).Google Scholar
  32. 25.
    E. Del Giudice, S. Doglia, M. Milani and G. Vitiello, in “Modern Bioelectro- chemistry”, eds. F. Guttmann and H. Keyzer, Plenum Press, N. Y. (1986); in “Nonlinear Electrodynamics in Biological Systems”, eds. W. R. Adey and A. F. Lawrence, Plenum Press, N. Y. (1984).Google Scholar
  33. 26.
    J. A. Tuszydski,R. Paul, R. Chatterjee and S. R. Sreenivasan, Phys. Rev. 30A, 2666 (1984).Google Scholar
  34. R. Paul, Phys Lett. 96A, 263 (1983).CrossRefGoogle Scholar
  35. T. M. Wu and S. Austin, Phys. Lett. 64A 15* (1977); 65A, 74 (1978); 73A, 266 (1979).Google Scholar
  36. J. Chela-Flores, J. Theor. Biol. 117, 107 (1985).PubMedCrossRefGoogle Scholar
  37. 27.
    E. Del Giudice, S. Doglia, M. Milani and G. Vitiello, Electromagnetic Field and Spontaneous Symmetry Breaking in Biological Matter, preprint 1986.Google Scholar
  38. 28.
    A. S. Davydov,“Biology and Quantum Mechanics”, Pergamon,Oxford (1982).Google Scholar
  39. 29.
    I. Prigogine and G. Nicolis,“Self-organization in non-equilibrium Systems; from dissipative structures to order through fluctuations”, Wiley, N. Y. (1977).Google Scholar
  40. 30.
    H. Fröhlich, Rivista del Nuovo Cimento 7,399 (1977); Advances in Electron Physics, ed. L. Marton and C. Marton, vol. 53,85 (1980).Google Scholar
  41. 31.
    S. Celaschi and S. Mascarenhas, Biophys. J. 20, 273 (1977).PubMedCrossRefGoogle Scholar
  42. J. B. Hasted, H. M. Millany and D. Rosen, J. Chem. Soc. Faraday Trans. 77, 2289 (1981).Google Scholar
  43. G. Albanese, A. Deriu and F. Ugozzoli, in Proc. Int. Conf. on the Application of Mössbauer Effect, Alma Ata, USSR, 1983.Google Scholar
  44. 32.
    Y. R. Shen,Prog. Quant. Electr. 4, 1 (1975).CrossRefGoogle Scholar
  45. 33.
    E. Del Giudice, S. Doglia and M. Milani, Phys. Lett. 90A, 104 (1982); in “Nonlinear Electrodynamics in Biological Systems”, eds. W. R. Adey and A. F. Lawrence, Plenum Press, N. Y. (1984); in “Interactions between Electromagnetic Fields and Cells”, eds. A. Chiabrera, C. Nicolini and H. Schwan, Plenum Press, N. Y. (1985).Google Scholar
  46. 34.
    I. I. Wolosewick and K. R. Porter, J. Cell Biol. 82, 114 (1979).PubMedCrossRefGoogle Scholar
  47. A. Hoglund, R. Karlsson, E. Arro, B. Fredrikssonn and U. Lindberg, J. Muscle Res. Cell Motility 1, 127 (1980).CrossRefGoogle Scholar
  48. J. S. Clegg, Colletive Phen. 3, 289 (1981).Google Scholar
  49. R. L. Margolis and L. Wilson, Nature 293, 705 (1981).PubMedCrossRefGoogle Scholar
  50. 35.
    H. Fröhlich and F. Kremer, eds., “Coherent Excitations in Biological Systems”, Springer, Berlin (1983).Google Scholar
  51. 36.
    S. Rowlands, L. S. Sewchand and E. G. Enns, Phys. Lett. 87A, 256 (1982); 93A, 363 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Giuseppe Vitiello
    • 1
    • 2
  1. 1.Dipartimento di Fisica dell’UniversitàSalernoItalia
  2. 2.Istituto Nazionale di Fisica NucleareSezione di NapoliItalia

Personalised recommendations