Physical Models on Discrete Space and Time

  • Miguel Lorente

Abstract

The idea of space and time quantum operators with a discrete spectrum has been proposed frequently spacially after the discovery that some physical quantities exhibit measured values that are multiple of a fundamental unit. In 1935 Heisenberg proposed an elementary length in analogy with the observed unit of charge and action. It would be impossible enumerate all the papers written in the same direction. We want to concentrate ourselves in several papers published recently, where other references can be found.

Keywords

Difference Equation Continuous Limit Canonical Commutation Relation Heisenberg Equation Boson Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Bender, D.H. Sharp, Phys. Rev. Lett. 50, 1535 (1983)CrossRefGoogle Scholar
  2. C.M. Bender, K.A. Milton, D.H. Sharp, Phys. Rev. Lett. 51, 1815 (1983)CrossRefGoogle Scholar
  3. C.M. Bender, K.A. Milton, D.H. Sharp, Phys. Rev. D31, 383 (1985)CrossRefGoogle Scholar
  4. C.M. Bender, K.A. Milton, D.H. Sharp, L.M. Simmons, Jr., R. Stong, Phys. Rev. D32, 1476 (1985)CrossRefGoogle Scholar
  5. C.M. Bender, F. Cooper, V.P. Gutschick, M. Martin Nieto, Phys. Rev. D32, 1486 (1985)Google Scholar
  6. C.M. Bender, K.A. Milton, S.S. Pinsky, L.M. Simmons, Phys. Rev. D33, 1692 (1986)Google Scholar
  7. C.M. Bender, L.M. Simmons, Jr., R. Stong, Phys. Rev. D33, 2362 (1986)Google Scholar
  8. 2.
    V. Moncrief, Phys. Rev. D28, 2485 (1983). See alsoGoogle Scholar
  9. L. Vâzquez, Phys. Rev. D32, 2066 (1985)Google Scholar
  10. 3.
    H. Yamamoto, Phys. Rev. D30, 1727 (1984)Google Scholar
  11. H. Yamamoto, Phys. Rev. 32, 2659 (1985)CrossRefGoogle Scholar
  12. 4.
    R. Jagannathan, T.S. Santhanam, R. Vasudevan, Inter. J. Theor. Phys. 20, 755 (1981)CrossRefGoogle Scholar
  13. R. Jagannathan, T.S. Santhanam, Inter. J. Theor. Phys. 21, 351 (1982)CrossRefGoogle Scholar
  14. R. Jagannathan, Inter. J. Theor. Phys. 22, 1105 (1983)CrossRefGoogle Scholar
  15. 5.
    P. Stovicek, J. Toler, Rep. Math. Phys. 20, 157 (1984)CrossRefGoogle Scholar
  16. 6.
    V. Kaplunovsky, M. Weinstein, Phys. Rev. D31, 1879 (1985)Google Scholar
  17. 7.
    L. Castell, C.F. von Weizsäcker, Quantum Theory and the Structure of Space and Time V. 5, C. Hanser Verlag, Munich 1983Google Scholar
  18. 8.
    D. Finkelstein, Phys. Rev. D9, 2219 (1974)Google Scholar
  19. D. Finkelstein, Inter. J. Theor. Phys. 21, 489 (1982)CrossRefGoogle Scholar
  20. 9.
    M. Lorente, Inter. J. Theor. Phys. 11, 213 (1974)Google Scholar
  21. M. Lorente, Inter. J. Theor. Phys. 12, 927 (1976)Google Scholar
  22. M. Lorente, Inter. J. Theor. Phys. 25, 55 (1986)CrossRefGoogle Scholar
  23. 10.
    M. Lorente, “A Causal Interpretation of the Structure of Space and Time”, in Foundations of Physics (P. Weingarther, G. Dorn ed.) Hölder-Pichler-Tempsky, Vienna 1986Google Scholar
  24. 11.
    M. Garcia-Sucre, Inter. J. Theor. Phys. 24, 441 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Miguel Lorente
    • 1
  1. 1.Facultad de Ciencias FísicasUniversidad Complutense de MadridSpain

Personalised recommendations