Symmetries in Science II pp 255-263 | Cite as
Factorization-Algebraization-Path Integration and Dynamical Groups
Chapter
Abstract
Schrödingerl proposed an elegant method of factorization of a quantum-mechanical second-order linear differential equation into a product of two first-order differential operators often referred to as ladder operators. These ladder operators when acting on respective eigenfunctions create new eigenfunctions with a quantum number raised or lowered by one unit. Schrödinger’s method was further systematically studied for a class of second-order linear differential equations in particular by Infeld and Hull2 who have shown that a second-order differential equation which may be brought into the form:
may be factorized into products of two first-order ladder operators such that
(0.1)
(0.2)
Keywords
Path Integral Dynamical Group Unitary Irreducible Representation Kepler Problem Ladder Operator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.
- 2.L. Infeld, Phys. Rev. 59, 737 (1941);CrossRefGoogle Scholar
- T. Inui, Prog. Theor. Phys, 3, 168, 244 (1948);Google Scholar
- L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951);CrossRefGoogle Scholar
- H. R. Coish, Can. J. Phys. 34, 343 (1956);CrossRefGoogle Scholar
- G. Hadinger, N. Bessis and G. Bessis, J. Math. Phys. 15, 716 (1974).CrossRefGoogle Scholar
- 3.W. Miller, Jr.,Mem. Amer. Math. Soc. 50, 5 (1964).Google Scholar
- 4.B. Kaufman, J. Math. Phys. 7, 447 (1966)Google Scholar
- A. Joseph, Rev. Mod. Phys. 39, 829 (1967)Google Scholar
- C. A. Coulson and A. Joseph, Rev. Mod. Phys. 39, 838 (1967).CrossRefGoogle Scholar
- 5.W. Miller, Jr., Lie Theory and Special Functions, (Academic, New York, 1968 ); Symmetry and Seperation of Variables, ( Addison-Wesley, Massachusetts, 1977 ).Google Scholar
- 6.W. Miller, Jr., Comm. Pure Appl. Math. 17, 527 (1964)Google Scholar
- S. Strom, Ark. Fysik, 30 267 (1965)Google Scholar
- W. Miller, Jr., J. Math. Phys. 9, 1163, 1175, 1434 (1968).CrossRefGoogle Scholar
- 7.
- C. Itzykson, Comm. Math. Phys. 4 92 (1967).CrossRefGoogle Scholar
- 8.E. Celeghini and M. Tarlini, Nuovo Cimento B61, 265 (1982); B65, 172 (1982); B68 133 (1982).Google Scholar
- 9.A. O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory, ( University of Canterbury press, Christ-Church, 1972 ).Google Scholar
- 10.H.B.G. Casimir, Koninkhijke Academie van Wetenschappen te Amsterdam 34, 844 (1931);Google Scholar
- H.B.G. Casimir, Rotation of a Rigid body in Quantum Mechanics, thesis, University of Leiden (1931).Google Scholar
- 11.C.K.E. Schneider and R. Wilson, J. Maths. Phys. 20, 2380 (1979).CrossRefGoogle Scholar
- 12.V. Bargmann, Ann. Math. 48, 568 (1947).CrossRefGoogle Scholar
- 13.A. O. Barut and E. C. Phillips, Comm. Math. Phys. 8, 52 (1968).CrossRefGoogle Scholar
- 14.N. M. Atakishiev, Theo. and Math. Phys. 56, 735 (1983).Google Scholar
- 15.A. O. Barut and R. Wilson, Phys. Letts. 110A 351 (1985)Google Scholar
- A. O. Barut, A. Inomata and R. Wilson, Algebraization of Pöschl-Teller equation; Algebraization of second Pöschl-Teller equation, Morse-Rosen equation and Eckart-equation to be published.Google Scholar
- 16.L. C. Biadenharn and J. D. Louck, The Racah-Wigner Algebra in Quantum Theory ( Addison-Wesley, Mass. 1981 ).Google Scholar
- 17.H. Weyl, Königlichen Gesellschaft der Wissenschaflin zu Göttingen, Nachrichten page 37 (1909) and page 442 (1910).Google Scholar
- 18.See, e.g., A. Inomata and R. Wilson, “Path Integral Realization of a Dynamical Group,” in Proceedings of the Symposium on Conformal Groups and Structures, eds. A. O. Barut and H. D. Doebner ( Springer, Berlin, 1986 ).Google Scholar
- 19.I. H. Duru and H. Kleinert, Phys. Lett. 84B, 185 (1979);Google Scholar
- R. Ho and A. Inomata, Phys. Rev. Lett. 48, 231 (1982).CrossRefGoogle Scholar
- 20.R. P. Feynman and A. R. Hibbs, Path Integrals and Quantum Mechanics ( McGraw-Hill, New York, 1965 ).Google Scholar
- 21.D. Peak and A. Inomata, J. Math. Phys. 10, 1422 (1969).CrossRefGoogle Scholar
- 22.See, e.g., B. Wybourne, Classical Groups for Physicists ( John Wiley, New York, 1974 ), p. 209.Google Scholar
- 23.A. Inomata, Phys. Lett. 87A, 387 (1982).Google Scholar
- 24.P. Kustaanheimo and E. Stiefel, J. Reine Angew. Math. 218, 204 (1965);Google Scholar
- A. O. Barut, C.K.E. Schneider and R. Wilson, J. Math. Phys. 20, 2244 (1979).CrossRefGoogle Scholar
- 25.A. Inomata, Phys. Lett. 101A, 253 (1984).Google Scholar
- 26.P. Y. Cai, A. Inomata and R. Wilson, Phys. Lett. 96A, 117 (1983).Google Scholar
- 27.A. Inomata, in Path Integrals from meV to MeV, eds. M. C. Gutzwiller et al. ( World Scientific, Singapore, 1986 ).Google Scholar
- 28.G. Junker and A. Inomata, in Path Integrals from meV to MeV, eds. M. C. Gutzwiller et al. ( World Scientific,. Singapore, 1986 ).Google Scholar
- 29.A. Inomata and M. A. Kayed, Phys. Lett. 108A 9 (1985)Google Scholar
- A. Inomata and M. A. Kayed, J. Phys. A18, 235 (1985).Google Scholar
- 30.A. O. Barut, A. Inomata and G. Junker, in preparation.Google Scholar
Copyright information
© Springer Science+Business Media New York 1986