Scaling Properties of Cluster and Particle Aggregation

  • M. Kolb
  • R. Jullien
  • R. Botet

Abstract

The model of cluster aggregation and several variants of it serve to describe different disordered aggregation processes and their scaling properties. Here, the basic model is introduced and its properties are briefly discussed. Some more recent results are then presented in more detail : simplifying features in high dimension, gelation in cluster aggregation, the role of reaction kinetics, the problem of cluster readjustment and the internal structure of clusters in relation to the growth process. Finally a film, produced to illustrate how clusters aggregate, is described.

Keywords

Fractal Dimension Particle Aggregation Cluster Aggregation Smoluchowski Equation Linear Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An overview of both theoretical and experimental results can be found in the abstracts of the workshop on “Kinetic models for cluster formation’ (september 17–28, 1984, CECAM, Orsay); R. Jullien, M. Kolb, H. Herrmann and J. Vannimenus, eds. J. Stat. Phys. (April 1985).Google Scholar
  2. 2.
    P. Meakin, Phys. Rev. Lett. 51, 1119 (1983)CrossRefGoogle Scholar
  3. M. Kolb, R. Botet and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983)CrossRefGoogle Scholar
  4. 3.
    S. R. Forrest and T. A. Witten, J. Phys. A 12, 1109 (1979)Google Scholar
  5. D. A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984)CrossRefGoogle Scholar
  6. D. A. Weitz, M. Y. Lin and C. J. Sandroff, Surf. Sci. to appear (1985)Google Scholar
  7. 4.
    R. Jullien, M. Kolb and R. Botet, J. Physique Lett. 45, L 211 (1984)CrossRefGoogle Scholar
  8. 5.
    R. Jullien, J. Phys. A 17, L 771 (1984)MathSciNetGoogle Scholar
  9. 6.
    R. Jullien and M. Kolb, J. Phys. A 17, L 639 (1984)Google Scholar
  10. M. Kolb and R. Jullien, J. de Physique, Lett. 45, L 977 (1984)CrossRefGoogle Scholar
  11. 7.
    T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981)CrossRefGoogle Scholar
  12. 8.
    M. Kolb, Phys. Rev. Lett. 53, 1653 (1984)CrossRefGoogle Scholar
  13. 9.
    R. Botet and R. Jullien, J7-Phys. A 17, 2517 (1984)MathSciNetMATHCrossRefGoogle Scholar
  14. 10.
    R. Botet, R. Jullien and M. Kolb, Phys. Rev. A 30, 2150 (1984)CrossRefGoogle Scholar
  15. 11.
    R. Ball and T. A. Witten, Conference on Fractals; Gaithersburg Md. (Nov. 1983)Google Scholar
  16. 12.
    R. Botet, J. Phys. A, 18, 847 (1985)CrossRefGoogle Scholar
  17. 13.
    R. Ball and R. Jullien, J. de Physique Lett. 45, L 1031 (1984)CrossRefGoogle Scholar
  18. 14.
    C. Allain and B. Jouhier, J. de Physique Lett. 44, L 421 (1983)CrossRefGoogle Scholar
  19. 15.
    P. Ricetti, J. Prost and P. Barois, J. de Physique Lett.,L 1137 (1984)Google Scholar
  20. 16.
    M. Kolb and H. Herrmann, J. Phys. A Lett., to appearGoogle Scholar
  21. 17.
    R. Jullien and P. Meakin, submitted for publicationGoogle Scholar
  22. 18.
    M. Kolb, submitted for publicationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. Kolb
    • 1
    • 2
  • R. Jullien
    • 1
  • R. Botet
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance
  2. 2.Institute for Theoretical PhysicsFreie Universität BerlinBerlin 33W-Germany

Personalised recommendations