Computable Chaotic Orbits of Ergodic Dynamical Systems

  • J. L. McCauleyJr.
  • J. I. Palmore

Abstract

The central theme of this Institute is scaling in disordered systems, especially the use of both regular (periodic) and ‘random’ fractals to describe the scaling properties. In a related set of lectures, Wolfram1 has shown how both regular and pseudo-random states can be generated systematically via simple integer maps called cellular automata. The question whether a given problem is ‘decidable or intractable’1-b was touched upon in a general way. For example, the question whether a given cellular automaton generates a truly random sequence of bits when no pattern can be found may be undecideable: it is always possible that an algorithm generates a pattern that is sufficiently complex that we may fail to decode it, yet it may pass all standard tests for randomness. We regard this as an example of the sort of limitation upon computability that is suggested by the work of Turing.2,2-b

Keywords

Cellular Automaton Turing Machine Random Draw Unstable Periodic Orbit Bernoulli Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wolfram, in these proceedings (1985).Google Scholar
  2. 1-b.
    S. Wolfram, Phys. Rev. Lett. 54, 735 (1985).CrossRefGoogle Scholar
  3. 2.
    A. Turing, Proc. Lond. Math. Sc.(2) 42, 230 (1937).Google Scholar
  4. 2-b.
    Andrew Hodges, Alan Turing: The Enigma’Simon and Schuster, 1983), pp. 91 110.Google Scholar
  5. 3.
    J. G. Nash, BYTE 10, 177 (1985).Google Scholar
  6. 4.
    A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion Springer-Verlag (1983).Google Scholar
  7. 4-b.
    M. V. Berry in Topics in Nonlinear Dynamics edited by S. Jorna, Vol. 46, AIP (1975).Google Scholar
  8. 5.
    G. J. Chaitin, Sci. Am. 232, 47 (1975).CrossRefGoogle Scholar
  9. 6.
    L. P. Kadanoff, Physics Today 36, 46 (1983).CrossRefGoogle Scholar
  10. 7.
    M. Kac, Statistical Independence in Probability, Analysis and Number Theory The Carus Mathematical Monographs No. 12 (1959).Google Scholar
  11. 8.
    J. L. McCauley Jr. and Julian I. Palmore, to be published (1985).Google Scholar
  12. 9.
    S. Wolfram, Origins of Randomness in Physical Systems (1985).Google Scholar
  13. 10.
    J. Ford, Physics Today 36, 40 (1983).CrossRefGoogle Scholar
  14. 11.
    S. G. Brush, Kinetic Theory Vol. 2, Pergamon Press (1966).Google Scholar
  15. 12.
    S. Grossmann and S. Thomae, Z. Naturforsch. 32a, 1353 (1977).MathSciNetGoogle Scholar
  16. 13.
    G. Benettin, G. M. Casartelli, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Nuovo Cimento 44B, 183 (1978).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. L. McCauleyJr.
    • 1
  • J. I. Palmore
    • 2
  1. 1.Department of PhysicsUniversity of Houston--University ParkHoustonUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations