Scaling in Colloid Aggregation

  • D. A. Weitz
  • M. Y. Lin
  • J. S. Huang
  • T. A. Witten
  • S. K. Sinha
  • J. S. Gethner
  • R. C. Ball

Abstract

We study the aggregation of aqueous gold colloids and apply modern scaling methods to interpret our results. We find that there are two regimes of aggregation, each with different rate-limiting physics, depending on the sticking probability of the individual colloidal particles. Each regime is distinguished by the fractal dimension of the resultant clusters, the aggregation dynamics and the cluster-mass distribution. The two regimes are diffusion-limited cluster aggregation and reaction-limited aggregation; and the two represent the two limiting universality classes for kinetic cluster-cluster aggregation.

Keywords

Fractal Dimension Gold Colloid Fractal Structure Logarithmic Plot Transmission Electron Microscopy Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).CrossRefGoogle Scholar
  2. 2.
    Kinetics of Aggregation and Gelation“ ed. by F. Family and D. P. Landau (North Holland, Amsterdam 1984).Google Scholar
  3. 3.
    B. V. Enustin and J. Turkevitch, J. Am. Chem. Soc. 85, 3317 (1963).CrossRefGoogle Scholar
  4. 4.
    E. J. W. Verwey and J. Th. G. Overbeek “Theory of the Stability of Lyophobic Colloids,” (Elsevier, NY 1948 ).Google Scholar
  5. 5.
    D. A. Weitz, M. Y. Lin and C. J. Sandroff, Surf. Sci., to appear.Google Scholar
  6. 6.
    J. Turkevitch, A. Garton and P. C. Stevenson, J. Colloid Sci. 9, 26 (1954).CrossRefGoogle Scholar
  7. 7.
    J. A. Creighton, C. B. Blatchford and M. B. Albrecht, J. Chem. Soc. Faraday Trans. II 75, 790 (1979).CrossRefGoogle Scholar
  8. 8.
    D. A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984).CrossRefGoogle Scholar
  9. 9.
    B. B. Mandelbrot, “The Fractal Geometry of Nature” ( Freeman, San Francisco, 1982 ).MATHGoogle Scholar
  10. 10.
    M. Y. Lin and D. A. Weitz, to be published.Google Scholar
  11. 11.
    D. W. Schaefer, J. E. Martin, P. Wiltzius and D. S. Cannell, Phys. Rev. Lett. 52, 2371 (1984).CrossRefGoogle Scholar
  12. 12.
    S. K. Sinha, T. Freltoft and J. Kjems in Ref. 2, p 87.Google Scholar
  13. 13.
    S. K. Sinha, D. A. Weitz, J. S. Huang, M. Y. Lin, J. S. Gethner and R. Pynn, to be published.Google Scholar
  14. 14.
    D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 54, 1416 (1985).CrossRefGoogle Scholar
  15. 15.
    P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).CrossRefGoogle Scholar
  16. 16.
    M. Kolb, R. Botet and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).CrossRefGoogle Scholar
  17. 17.
    D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 53, 1657 (1984).CrossRefGoogle Scholar
  18. 18.
    B. J. Berne and R. Pecora, “Dynamic Light Scattering” ( Wiley, New York, 1976 ).Google Scholar
  19. 19.
    J. E. Martin and B. J. Ackerson, preprint.Google Scholar
  20. 20.
    M. Von Smoluchowski, Phys. Z. 17, 557, 585 (1916).Google Scholar
  21. 21.
    P. Meakin, Z. Y. Chen and J. M. Deutch, J. Chem. Phys. 82, 3786 (1985).CrossRefGoogle Scholar
  22. 22.
    R. J. Cohen and G. B. Benedeck, J. Phys. Chem. 86, 3696 (1982).CrossRefGoogle Scholar
  23. 23.
    S. K. Friedlander and C. S. Wang, J. Colloid and Interface Sci., 22, 126 (1966).CrossRefGoogle Scholar
  24. 24..
    D. A. Weitz and J. S. Huang, in Ref. 2, p. 19.Google Scholar
  25. 25.
    R. C. Ball, D. A. Weitz, T. A. Witten and F. Leyvraz, to be published.Google Scholar
  26. 26.
    R. Jullien, M. Kolb and R. Botet, J. Phys. Lett. 45, L211 (1984).CrossRefGoogle Scholar
  27. 27.
    W. D. Brown and R. C. Ball, to be published.Google Scholar
  28. 28.
    R. C. Bull and T. A. Witten, J. Stat. Phys. 36, 873 (1984).CrossRefGoogle Scholar
  29. 29.
    F. Leyvraz, Phys. Rev. A29, 854 (1984).CrossRefGoogle Scholar
  30. 30.
    P. G. J. Van Dongen and M. H. Ernst, Phys. Rev. Lett. 54, 1396 (1985).CrossRefGoogle Scholar
  31. 31.
    G. K. von Schulthess, G. B. Benedek and R. W. DeBlois, Macromolecules 13, 939 (1980).CrossRefGoogle Scholar
  32. 32.
    D. Johnston and G. B. Benedek, Ref. 2, p. 181.Google Scholar
  33. 33.
    J. Feder, T. Jossang and E. Rosenqvist, Phys. Rev. Lett. 53, 1403 (1984) and J. Feder and T. Jossang, this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. A. Weitz
    • 1
  • M. Y. Lin
    • 1
  • J. S. Huang
    • 1
  • T. A. Witten
    • 1
  • S. K. Sinha
    • 1
  • J. S. Gethner
    • 1
  • R. C. Ball
    • 2
  1. 1.Exxon Research and Engineering CoClinton Township, AnnandaleUSA
  2. 2.Cavendish Labs Department of PhysicsCambridge UniversityCambridgeEngland

Personalised recommendations