Metastability and Landau Theory for Random Fields and Demixing in Porous Media

  • David Andelman
  • Jean-François Joanny

Abstract

In recent years there was a big increase in experiments on physical systems that are realizations of random fields. Just to name a few these include diluted antiferromagnets in a magnetic field, charge density waves pinned by impurities, hydrogen in binary metallic alloys and quite recently also binary liquid mixtures in gels. In all these systems there are annealed degrees of freedom (spin like) and a source of quenched disorder (impurities, random structure, etc) that effectively creates a random field which is coupled to the order parameter. In this article we will concentrate on random field systems where the order parameter is a scalar and the random field is coupled linearly to it (i.e. the random field Ising model — RFIM).

Keywords

Random Field Charge Density Wave Domain State Field Cool Random Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review see: G. Ginstein and S.-K. Ma, Phys. Rev. B 28, 2588 (1983).CrossRefGoogle Scholar
  2. 2.
    Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975).CrossRefGoogle Scholar
  3. 3.
    G. Grinstein and S.-k. Ma, Phys. Rev. Lett. 49, 685 (1982);CrossRefGoogle Scholar
  4. J. Villain, J. Phys. (Paris), Lett. 43, L-551 (1982);CrossRefGoogle Scholar
  5. K. Binder, Z.Phys. 50, 343 (1983);CrossRefGoogle Scholar
  6. D.S. Fisher, J. Fröhlich, and T. Spencer, J. Stat. Phys. 34, 863 (1984).CrossRefGoogle Scholar
  7. 4.
    J.F. Fernandez, G. Grinstein, Y. Imry, and S. Kirkpatrick, Phys.Rev. Lett. 51, 203 (1983);CrossRefGoogle Scholar
  8. D. Andelman, H. Orland, and L.C.R. Wijewardhana, Phys. Rev. Lett. 52, 145 (1984);CrossRefGoogle Scholar
  9. D. Stauffer, C. Hartzstein, K. Binder, and A. Aharony, Z. Phys. B 55, 352 (1984).CrossRefGoogle Scholar
  10. 5.
    J.Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984).CrossRefGoogle Scholar
  11. 6.
    M. Hagen, R.A. Cowley, S.K. Satija, H. Yoshizawa, G. Shirane, R.J. Birgeneau, and H.J. Guggenheim, Phys. Rev. B 28, 2602 (1983);CrossRefGoogle Scholar
  12. D. Belanger, A.R. King, and V. Jaccarino, Phys. Rev. Lett. 48, 1050 (1982).CrossRefGoogle Scholar
  13. 7.
    J. Villain, Phys. Rev. Lett. 52, 1543 (1984).CrossRefGoogle Scholar
  14. 8.
    G. Grinstein and J.F. Fernandez, Phys. Rev. B 29, 6389 (1984);CrossRefGoogle Scholar
  15. R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52, 1547 (1984).CrossRefGoogle Scholar
  16. 9.
    J.V. Maher, W.I. Goldburg, D.W. Pohl, and M. Lanz, Phys. Rev. Lett. 53, 60 (1984)CrossRefGoogle Scholar
  17. 10.
    R.J. Birgeneau, R.A. Cowley, G. Shirane, and H. Yoshizawa, preprint.Google Scholar
  18. 11.
    H. Yoshizawa and D.P. Belanger, Phys. Rev. B 30, 5220 (1984);CrossRefGoogle Scholar
  19. C. Ro, G.S. Grest, C.M. Soukoulis, and K. Levin, Phys. Rev. B 31, 1682 (1985).CrossRefGoogle Scholar
  20. 12.
    P.G. de Gennes, J. Phys. Chem. 88, 6469 (1985).CrossRefGoogle Scholar
  21. 13.
    D. Andelman and J.F. Joanny, Collège de France, preprint, 1985.Google Scholar
  22. 14.
    D. Andelman and J.F. Joanny, “Proceeding of Les Houches Conference on Physics of Finely Divided Matter, 1985”.Google Scholar
  23. 15.
    T. Schneider and E. Pytte, Phys. Rev. B 15, 1519 (1977);CrossRefGoogle Scholar
  24. A. Aharony, Phys. Rev. B 18, 3318 (1978).CrossRefGoogle Scholar
  25. 16.
    D. Andelman and J.F. Joanny, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David Andelman
    • 2
  • Jean-François Joanny
    • 1
  1. 1.Physique de la Matière CondenséeCollège de FranceParis Cedex 05France
  2. 2.Corporate Science Research LaboratoryExxon Research and Engineering Co.AnnandaleUSA

Personalised recommendations