Semantic Representations for Natural Language Query Processing

  • Stephen D. Burd
  • Shuh-Shen Pan
  • Andrew B. Whinston
Part of the Management and Information Systems book series (MIS)

Abstract

One of the recommendations of the codasyl committee(7) was the development of a nonprocedural language for accessing a database system. The goal of this recommendation was to allow a larger number of users to access a database. Ideally, a query language should allow a user to access the database without procedurally specifying exactly how this access must be performed. In addition, the language should be simple to use and should require a minimal amount of training and prerequisite knowledge on the part of the user.

Keywords

Natural Language Language Query Lexical Item Lexical Entry Semantic Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bloomfield, Linguistic aspects of science, in The International Encyclopedia of Unified Science, O. Neurath, R. Carnap, and C. Morris, Eds., University of Chicago Press, Chicago, 1955, Vol. 1, pp. 1–5.Google Scholar
  2. 2.
    R. F. Boyce, D. D. Chamberlin, W. F. King, and M. M. Hammer, Specifying queries as relational expressions: Square, Ibm Research Report No. RJ-1291, Ibm Research Laboratory, San Jose, California, October, 1973.Google Scholar
  3. 3.
    D. D. Chamberlin, and R. F. Boyce, Sequel: A structured English query language, Proceedings of ACM Sig-Fidet Workshop, Ann Arbor, Michigan, May, 1974.Google Scholar
  4. 4.
    P. P.-S. Chen, The entity-relationship model-Toward a unified view of data, ACM Trans. Database Syst. March, 9–36 (1976).Google Scholar
  5. 5.
    N. Chomsky, Aspects of the Theory of Syntax, Mit Press, Cambridge, Massachusetts, 1965.Google Scholar
  6. 6.
    J. Clifford, and D. S. Warren, Formal semantics for time in databases, ACM Trans. Database Syst 8 (2) 214–254 (1983).CrossRefGoogle Scholar
  7. 7.
    Codasyl Committee, Data base task group report, Association for Computing Machinery, 1971.Google Scholar
  8. 8.
    E. F. Codd, Extending the database relational model to capture more meaning, ACM Trans. Database Syst 4 (4), 397–434 (1979).CrossRefGoogle Scholar
  9. 9.
    A. Colmerauer, Metamorphosis grammars, in Natural Language Communication with Computers, L. Bolc, Ed., Springer-Verlag, Berlin, 1978.Google Scholar
  10. 10.
    C. J. Fillmore, The case for case, in Universals in Linguistic Theory, Emmon Bach and Robert T. Harms, Eds., Holt, Rinehart and Winston, New York, 1968.Google Scholar
  11. 11.
    L. R. Harris, Robot: A high performance natural language interface for data base query, Dartmouth College Technical Report No. TR77–1, February, 1977.Google Scholar
  12. 12.
    S. J. Kaplan, Cooperative responses from a portable natural language data base query system, Ph.D. thesis, Department of Electrical Engineering, University of Pennsylvania, 1979.Google Scholar
  13. 13.
    J. J. Katz, and J. A. Fodor, The structure of a semantic theory, Language 39, 170–210 (1963).CrossRefGoogle Scholar
  14. 14.
    J. D. Mccawley, The role of semantics in a grammar, in Universals in Linguistic Theory, E. Bach and Robert T. Harms, Eds., Holt, Rinehart, and Winston, 1968.Google Scholar
  15. 15.
    M. C. MccoRD, Using slots and modifiers in logic grammars for natural language, Artif. Intell 18, 327–367 (1982).Google Scholar
  16. 16.
    M. C. MccoRD, Slot grammars, Am. f. Comput. Linguistics 6 (1), 31–43 (1980).Google Scholar
  17. 17.
    F. C. N. Pereira, and D. H. D. Warren, Definite clause grammars for language analysis-A survey of the formalism and a comparison with augmented transition networks, Artif. Intell 13, 231–278 (1980).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    P. R. Reisner, R. F. Boyce, and D. D. Chamberlin, Human factors evaluation of two data base query languages-Square and Sequel, Afips National Computer Conference Proceedings, 1975, pp. 447–452.Google Scholar
  19. 19.
    J. M. Smith, and D. C. P. Smith, Database abstractions: Aggregation and generalization, ACM Trans. Database Syst. 2 (2), 105–133 (1977).CrossRefGoogle Scholar
  20. 20.
    J. C. Thomas, and J. D. Gould, A psychological study of query by example, Afips National Computer Conference Proceedings, 1975, pp. 439–445.Google Scholar
  21. 21.
    T. Winograd, Understanding Natural Language, Academic Press, New York, 1972.Google Scholar
  22. 22.
    W. A. Woods, Transition network grammars for natural language analysis, Commun. ACM 13 (10), 591–606 (1970).MATHCrossRefGoogle Scholar
  23. 23.
    M. M. Zloof, Query by example, Afips National Computer Conference Proceedings, 1975, pp. 431–438.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Stephen D. Burd
    • 1
  • Shuh-Shen Pan
    • 2
  • Andrew B. Whinston
    • 3
  1. 1.Anderson School of ManagementUniversity of New MexicoAlbuquerqueUSA
  2. 2.Bell Communications ResearchHolmdelUSA
  3. 3.Krannert Graduate School of ManagementPurdue UniversityLafayetteUSA

Personalised recommendations