Pharmacological Actions of Phospholipids

  • G. Pepeu
  • M. G. Vannucchi
  • P. L. Di Patre

Abstract

The biological importance of phospholipids was already clear to Thudicum who in 1884 wrote “Phospholipids are the centre, life, and chemical soul of all bioplasm whatsoever, that of plants as well of animals”16. However, for a long time the importance of phospholipids has been considered more structural than functional and pharmacologists have overlooked the possibility that, once released in the extracellular space or administered, they may exert powerful pharmacological actions. These actions may be involved in pathological processes, have toxicological rele-vance or be exploited for therapeutic purposes. The goal of this review is to describe the biological actions of some phospholipids which may be relevant from a pharmacological viewpoint. Details on the mechanisms through which phospholipid interaction with cell membranes brings about some of their actions will be discussed elsewhere (Bruni et al., this symposium).

Keywords

Platelet Activate Factor Histamine Release Senile Dementia Rabbit Platelet Platelet Activate Factor Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, D.H. and Snyder, F., 1983, Biosynthesis of 1-alkyl-2-acetyl-snglycero-3-phosphocholine (platelet-activating factor) from 1-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages. Phospholipase A2 and acetyltransferase activities during phagocytosis and ionophore stimulation, J. Biol. Chem., 25: 97–102.Google Scholar
  2. 2.
    Ansell, G.B., 1973, Phospholipids and the nervous system. In: “Form and Function of Phospholipids”, G.B. Ansell, J.N. Hawthorne, R.M.C. Dawson, eds, pp 377–422, Elsevier, Amsterdam.Google Scholar
  3. 3.
    Bartus, R.T., Dean, R.L., Beer, B. and Lippa, A.S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science, 217: 408–417.PubMedCrossRefGoogle Scholar
  4. 4.
    Benveniste, J.P., Henson, P.M. and Cochrane, C.G., 1972, Leucocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils and a platelet activating factor, J. Exp. Med., 136: 1356–1376.PubMedCrossRefGoogle Scholar
  5. 5.
    Braquet, P. and Rola-Pleszczynski, M., 1987, The role of PAF in immunological responses: a review, Prostaglandins, 34: 143–147.PubMedGoogle Scholar
  6. 6.
    Bruni, A., 1988, Autacoids from membrane phospholipids, Pharmacol. Res. Comm., 20: 529–543.CrossRefGoogle Scholar
  7. 7.
    Casamenti, F., Mantovani, P., Amaducci, L. and Pepeu, G., 1979, Effect of phosphatidylserine on acetylcholine output from the cerebral cortex of the rat, J. Neurochem., 32: 529–533.PubMedCrossRefGoogle Scholar
  8. 8.
    Corr, P.B., Yamada, K.A., Creer, H.H., Sharma, A.D. and Sobel, B.E., 1987, Lysophosphaglycerides and ventricular fibrillation early after onset of ischemia, J. Mol. Cell Cardiol., 19, Suppl. V: 45–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Davies, P. and Maloney, A.J.F., 1976, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet, 2: 1403.PubMedCrossRefGoogle Scholar
  10. 10.
    Debuch, H., Witter, B., Illig, K., and Gunawan, J., 1982, On the metabolism of etherphospholipids in glial cell cultures, in: “Phospholipids in the Central Nervous System, Vol 1 Metabolism”, L. Horrocks, G.B. Ansell and G. Porcellati eds., pp. 199–210, Raven Press, New York.Google Scholar
  11. 11.
    Demopoulos, C.A., Pinckard, R.N, and Hanahan, D.J., 1979, Platelet activating factor. Evidence for l-0-alkyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem., 254: 9355–9358.PubMedGoogle Scholar
  12. 12.
    Goth, A., Adams, H.R. and Knoohuizen, M., 1971, Phosphatidylserine: selective enhancer of histamine release, Science, 173: 1034–1035.PubMedCrossRefGoogle Scholar
  13. 13.
    Gurr, M.I. and James, A.T., 1971, “Lipid Biochemistry: An Introduction”, Chapman and Hall, London.Google Scholar
  14. 14.
    Handley, D.A. and Saunders, R.N., 1986, Platelets activating factor and inflammation in atherosclerosis: targets for drug development, Drug. Dev.Res. 7:361–375.CrossRefGoogle Scholar
  15. 15.
    Hirasawa, K. and Nishizuka, Y., 1981, Phosphatidylinositol turnover in receptor mechanism and signal transduction. Ann.Rev.Pharmacol.Toxicol., 25: 147–170.Google Scholar
  16. 16.
    Horrocks, L.A., Ansell, G.B. and Porcellati, G, 1982, Preface, in: “Phospholipids in the Central Nervous System, Vol 1 Metabolism”, L. Horrocks, G.B. Ansell, and G. Porcellati eds., Raven Press, New York.Google Scholar
  17. 17.
    Martindale, 1982, “The Extra Pharmacopoeia” 28th Ed, J.E.F. Reynolds ed, pp 1651–1652, The Pharmaceutical Press, London.Google Scholar
  18. 18.
    Mongar, J.L. and Svec, P., 1972, The effect of phospholipids on anaphy-lactic histamine release, Br. J. Pharmacol., 46: 741–752.PubMedCrossRefGoogle Scholar
  19. 19.
    Mozzi, R., Goracci, G., Siepi, D., Francescangeli, E., Andreoli, V., Horrocks, L.A. and Porcellati, G, 1982, Phospholipid synthesis by interconversion reactions in brain tissue, in: “Phospholipids in the Central Nervous System. Vol 1 Metabolism”, L. Horrocks, G.B. Ansell and G. Porcellati eds., pp 1–12 Raven Press, New York.Google Scholar
  20. 20.
    Muirhead, E.E., Byers, L.W., Desiderio, D., Smith, K.A., Prewitt, R.L. and Brooks, B., 1981, Alkyl ether analogs of phosphatidylcholine are orally active in hypertensive rabbits, Hypertension, 3, Suppl.1:107–111.Google Scholar
  21. 21.
    Neufeld, K.J., Lederman, C.L., Choy, P.C. and Man, R.Y.K., 1985, The effect of lidocaine on lysophosphatidylcholine-induced cardiac arrhythmias and cellular disturbances, Can. J. Physiol. Pharmacol., 63: 804–808.PubMedCrossRefGoogle Scholar
  22. 22.
    Pogwizd, S.M., Onufer, J.R., Kramer, J.B., Sobel, B.E. and Corr, P.B., 1986, Induction of delayed after-depolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides, Circ.Res., 59: 416–426.PubMedCrossRefGoogle Scholar
  23. 23.
    Saunders, R.N. and Handley, D.A., 1987, Platelet-activating factor, Ann. Rev.Pharmacol. Toxicol., 27: 237–255.CrossRefGoogle Scholar
  24. 24.
    Snyder, F, 1985, Chemical and biochemical aspects of platelet-activating factor: a novel class of acetylated ether-linked choline-phospholipids, Med.Res.Rev., 5: 107–140.PubMedCrossRefGoogle Scholar
  25. 25.
    Sobel, B.E., Corr, P.B., Robison, A.K., Goldstein, R.A., Witkowski, F.X. and Klein, M.S., 1978, Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium, J. Clin.Invest., 62:546–553.PubMedCrossRefGoogle Scholar
  26. 26.
    Sugiyama, K., Sasaki, J. and Yamasaki, H., 1975, Potentiation by phosphatidylserine of calcium-dependent histamine release from rat mast cells induced by concanavalin, Japan. J. Pharmacol. 25:485–487.CrossRefGoogle Scholar
  27. 27.
    Summer, W.K., Majovski, L.V., Marsh, G.M., Tachiki, K. and Kling, A., 1986, Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type, New England J. Med., 315: 1241–1245.CrossRefGoogle Scholar
  28. 28.
    Vargaftig, B.B., Lefort, J., Chignard, M. and Benveniste J, 1980, Platelet-activating factor induces a platelet-dependent bronchoconstriction unrelated to the formation of prostaglandin derivatives, Eur. J. Pharmacol., 65: 185–192.PubMedCrossRefGoogle Scholar
  29. 29.
    Vannucchi, M.G. and Pepeu, G., 1987, Effect of phosphatidylserine on acetylcholine release and content in cortical slices from aging rats, Neurobiol. Aging, 8: 403–407.PubMedCrossRefGoogle Scholar
  30. 30.
    Weltzien, H.U., 1979, Cytolytic and membrane-perturbing properties of lysophosphatidylcholine, Biochim.Biophys. Acta 559:259–287.PubMedCrossRefGoogle Scholar
  31. 31.
    Wessler, S. and Yin, E.T., 1968, Experimental hypercoagulable state induced by factor X: comparison of non-activated and activated forms, J.Lab.Clin.Med., 72: 256–262.PubMedGoogle Scholar
  32. 32.
    White, D.A., 1973, The phospholipid composition of mammalian tissues, in: “Form and Function of Phospholipids”, G.B. Ansell, J.N. Hawthorne, R.M.C. Dawson eds., pp. 441–482, Elsevier, Amsterdam.Google Scholar
  33. 33.
    Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and De Long, M.R., 1982, Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 215: 1237–1239.PubMedCrossRefGoogle Scholar
  34. 34.
    Wurtman, R.J., Blusztajn, J.K., Ulus, I.H., Coviella, I.L.G., Buyukuysal, L., Growdon, J.H. and Slack, B., 1989, Choline metabolism in cholinergic neurons: implications for the pathogenesis of neurodegenerative diseases, in: Advances in Neurology, Vol. 51, “Alzheimer’ Disease”, Wurtman, R.J., Corkin, S.H., Growdon, J.H. and Ritter-Walker, E. eds., pp. 117–125, Raven, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. Pepeu
    • 1
  • M. G. Vannucchi
    • 1
  • P. L. Di Patre
    • 1
  1. 1.Department of PharmacologyUniversity of FlorenceFlorenceItaly

Personalised recommendations