The Reconstituted Acetylcholine Receptor

  • Mauricio Montal
  • Robert Anholt
  • Pedro Labarca

Abstract

The nicotinic acetylcholine receptor (AChR) is the postsynaptic membrane protein that transduces the binding of acetylcholine (ACh) into the transient opening of a cation-selective channel. This signal-transduction event is the fundamental process in the transfer of information across synaptic junctions in excitable tissues (reviewed by Changeux, 1981; Changeux et al., 1984; Anhold et al., 1984; Karlin, 1980; Conti-Tronconi and Raftery, 1982).

Keywords

Acetylcholine Receptor Native Membrane Planar Lipid Bilayer Agonist Concentration Desensitize State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. J., Dwyer, T. M., and Hille, B., 1980, The permeability of endplate channels to monovalent and divalent metal cations, J. Gen. Physiol. 75:493–510.PubMedCrossRefGoogle Scholar
  2. Adams, D. J., Nonner, W., Dwyer, T. W., and Hille, B., 1981, Block of end-plate channels by permeant cations in frog skeletal muscle, J. Gen. Physiol. 78:593–615.PubMedCrossRefGoogle Scholar
  3. Anderson, D. J., Blobel, G., Tzartos, S., Gullick, W., and Lindstrom, J., 1983, Transmembrane orientation of an early biosynthetic form of acetylcholine receptor δ-subunit determined by proteolytic dissection in conjunction with monoclonal antibodies, J. Neurosci. 3:1773–1784.PubMedGoogle Scholar
  4. Anholt, R., 1981, Reconstitution of acetylcholine receptors in model membranes, Trends Biochem. Sci. 6:288–291.CrossRefGoogle Scholar
  5. Anholt, R., Lindstrom, J., and Montai, M., 1980, Functional equivalence of monomeric and dimeric forms of purified acetylcholine receptor from Torpedo californica in reconstituted lipid vesicles, Eur. J. Biochem. 109:481–487.PubMedCrossRefGoogle Scholar
  6. Anholt, R., Lindstrom, J., and Montai, M., 1981, Stabilization of acetylcholine receptor channels by lipids in cholate solution and during reconstitution in vesicles, J. Biol. Chem. 256:4377–4387.PubMedGoogle Scholar
  7. Anholt, R., Fredkin, D. R., Deerinck, T., Ellisman, M., Montai, M., and Lindstrom, J., 1982, Incorporation of acetylcholine receptors into liposomes: Vesicle structure and acetylcholine receptor function, J. Biol. Chem. 257:7122–7134.PubMedGoogle Scholar
  8. Anholt, R., Montai, M., and Lindstrom, J., 1983, Incorporation of acetylcholine receptors in model membranes: An approach aimed at studies of the molecular basis of neurotransmission, Peptide Protein Rev. 1:95–137.Google Scholar
  9. Anholt, R., Lindstrom, J., and Montai, M., 1984, The molecular basis of neurotransmission: Structure and function of the nicotinic acetylcholine receptor, in: The Enzymes of Biological Membranes, ed. 2 (A. Martonosi, ed.), Plenum Press, New York. pp. 335-401.Google Scholar
  10. Barrantes, F. J., 1978, Agonist-mediated changes of the acetylholine receptor in its membrane environment, J. Mol. Biol. 124:1–26.PubMedCrossRefGoogle Scholar
  11. Barrantes, F. J., Neugebauer, D.-C, and Zingsheim, H. P., 1980, Peptide extraction by alkaline treatment is accompanied by reangement of the membrane bound acetylcholine receptor from Torpedo marmorata, FEBS Lett. 112:73–78.CrossRefGoogle Scholar
  12. Blatt, Y., Montai, M. S., Lindstrom, J., and Montai, M. 1984, Effect of antireceptor monoclonal antibodies on single channel currents of purified acetylcholine receptor reconstituted in lipid bilayers, Biophys. J. 45:311a.Google Scholar
  13. Blatt, Y., Montai, M. S., Lindstrom, J., and Montai, M., 1986, Monoclonal antibodies specific to the.Google Scholar
  14. β and γ subunits of the Torpedo acetylcholine receptor inhibit channel gating, J. Neurosci. (in press).Google Scholar
  15. Boheim, G., Hanke, W., Barrantes, F. J., Eibl, H., Sakmann, B., Fels, G., and Maelicke, A., 1981, Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 78:3586–3590.PubMedCrossRefGoogle Scholar
  16. Boyd, N. D., and Cohen, J. B., 1980a, Kinetics of binding of [3H]-acetylcholine and 3[H]-carbamylcholine to Torpedo postsynaptic membranes: Slow conformational transitions of the cholinergic receptor, Biochemistry 19:5344–5353.PubMedCrossRefGoogle Scholar
  17. Boyd, N. D., and Cohen, J. B., 1980b, Kinetics of binding of [3H]-acetylcholine to Torpedo postsynaptic membranes: Association and dissocation rate constants by rapid mixing and ultrafiltration, Biochemistry 19:5353–5358.PubMedCrossRefGoogle Scholar
  18. Brunner, Y., Skrabal, P., and Häuser, H., 1976, Single bilayer vesicles prepared without sonication: Physico-chemical properties, Biochim. Biophys. Acta 455:322–331.PubMedCrossRefGoogle Scholar
  19. Cartaud, J., Sobel, A., Rousselet, A., Devaux, P., and Changeux, J.-P., 1981, Consequences of alkaline treatment for the ultra-structure of the acetylcholine receptor-rich membranes from Torpedo marmorata electric organ, J. Cell Biol. 90:418–426.PubMedCrossRefGoogle Scholar
  20. Cash, D. J., Aoshima, H., and Hess, G. P., 1981, Acetylcholine-induced cation translocation across cell membranes and inactivation of the acetylcholine receptor: Chemical kinetic measurements in the millisecond time region, Proc. Natl. Acad. Sci. U.S.A. 78:3318–3322.PubMedCrossRefGoogle Scholar
  21. Chang, H. W., and Bock, E., 1977, Molecular forms of the acetylcholine receptor: Effects of calcium ions and a sulfhydryl reagent on the occurrence of oligomers, Biochemistry 16:4513–4520.PubMedCrossRefGoogle Scholar
  22. Changeux, J.-P., 1981, The acetylcholine receptor: An allosteric membrane protein, Harvey Lect. 75:85–254.Google Scholar
  23. Changeux, J.-P., Heidmann, T., Popot, J., and Sobel, A., 1979, Reconstitution of a functional acetylcholine regulator under defined conditions, FEBS Lett. 105:181–187.PubMedCrossRefGoogle Scholar
  24. Changeux, J.-P., Devillers-Thiery, A., and Chemouilli, P., 1984, Acetylcholine receptor: An allosteric protein, Science 255:1335–1345.CrossRefGoogle Scholar
  25. Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor 7 subunit, Proc. Natl. Acad. Sci. U.S.A. 80:111–115.CrossRefGoogle Scholar
  26. Colquhoun, D., and Sakmann, B., 1981, Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels, Nature 294:464–466.PubMedCrossRefGoogle Scholar
  27. Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties, Annu. Rev. Biochem. 51:491–530.PubMedCrossRefGoogle Scholar
  28. Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes, Biophys. J. 43:231–236.PubMedCrossRefGoogle Scholar
  29. Criado, M., and Barrantes, F. J., 1984, Conversion of acetylcholine receptor dimers to monomers upon depletion of non-receptor peripheral proteins, Biochim. Biophys. Acta 798:374–381.PubMedCrossRefGoogle Scholar
  30. Criado, M., Eibl, H., and Barrantes, F. J., 1982, Effects of lipids on acetylcholine receptor: Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles, Biochemistry 21:3622–3629.PubMedCrossRefGoogle Scholar
  31. Criado, M., Eibl, H., and Barrantes, F. J., 1984, Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion-translocation, J. Biol. Chem. 259:9188–9198.PubMedGoogle Scholar
  32. Criado, M., Hochschwender, S., Sarin, V., Fox, L. J., and Lindstrom, J., 1985, Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits, Proc. Natl. Acad. Sci. U.S.A. 82:2004–2008.PubMedCrossRefGoogle Scholar
  33. Dalziel, A. W., Rollins, E. A., and McNamee, M. G., 1980, The effect of cholesterol on agonistinduced flux in reconstituted acetylcholine receptor vesicles, FEBS Lett. 122:193–196.PubMedCrossRefGoogle Scholar
  34. Damle, V., McLaughlin, M., and Karlin, A., 1978, Bromoacetylcholne as an affinity label of the acetylcholine receptor from Torpedo californica, Biochem. Biophys. Res. Commun. 84:845–851.CrossRefGoogle Scholar
  35. Dani, J. A., and Eisenman, G., 1984, Acetylcholine-activated channel current-voltage relations in symmetrical Na+ solutions, Biophys J. 45:10–12.PubMedCrossRefGoogle Scholar
  36. Devilliers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J. P., 1983, Complete mRNA coding sequence of the acetylcholine binding α-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 80:2067–2071.CrossRefGoogle Scholar
  37. Donnelly, D., Milhovilovic, M., Gonzalez-Ros, J. M., Ferragut, J. A., Richman, D., and Martinez-Carrion, M., 1984, A non-cholinergic site-directed monoclonal antibody can impair agonist-induced ion flux in Torpedo californica acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:7999–8003.PubMedCrossRefGoogle Scholar
  38. Dwyer, T. M., Adams, D., and Hille, B., 1980, The permeability of the endplate-channel to organic cations in frog muscle, J. Gen. Physiol. 75:469–492.PubMedCrossRefGoogle Scholar
  39. Elliott, J., Dunn, S. M. J., Blanchard, S. G., and Raftery, M. A., 1979, Specific binding of perhydrohistrionicotoxin to Torpedo acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 76:2576–2579.PubMedCrossRefGoogle Scholar
  40. Elliott, J., Blanchard, S. G., Wu, W., Miller, J., Strader, C. D., Hartig, P., Moore, H.-P., Racs, J., and Raftery, M. A., 1980, Purification of Torpedo californica postsynaptic membranes and fractionation of their constituent proteins, Biochem. J. 185:667–677.PubMedGoogle Scholar
  41. Epstein, M., and Racker, E., 1978, Reconstitution of carbamylcholine-dependent soidum ion flux and desensitization of the acetylcholine receptor from Torpedo californica, J. Biol. Chem. 253:6660–6662.Google Scholar
  42. Fairclough, R. H., Finer-Moore, J., Love, R. A., Kristofferson, D., Desmeules, P. J., and Stroud, R. M., 1983, Subunit organization and structure of an acetylcholine receptor, Cold Spring Harbor Symp. Quant. Biol. 48:9–20.PubMedCrossRefGoogle Scholar
  43. Finer-Moore, J., and Stroud, R. M., 1984, Amphipathic analysis and possible formation of the ionchannel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:155–159.PubMedCrossRefGoogle Scholar
  44. Fredkin, D. R., Montai, M., and Rice, J. A., 1985, Identification of aggregated Markovian models: pplication to the nicotinic acetylcholine receptor in: Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Volume I (L. M. LeCam and R. A. Olshen, eds.) pp. 269–289. Wadsworth, Belmont, California.Google Scholar
  45. Froehner, S. C., 1981, Identification of exposed and buried determinants of the membrane-bound acetylcholine receptor from Torpedo californica, Biochemistry 20:4905–4915.CrossRefGoogle Scholar
  46. Froehner, S. C., Gulbrandsen, V., Hyman, C., Jeng, A. Y., Neubig, R. R., and Cohen, J. B., 1981, Immunofluorescence localization at the mammalian neuromuscular junction of the M r 43,000 protein of Torpedo postsynaptic membranes, Proc. Natl. Acad. Sci. U.S.A. 78:5230–5234.PubMedCrossRefGoogle Scholar
  47. Fromherz, P., 1975, Instrumentation for handling monomolecular films at an air-water interface, Rev. Sci. Instrum. 46:1380–1385.CrossRefGoogle Scholar
  48. Gasko, O. D., Knowles, A. F., Shertzer, H. G., Suolinna, E. M., and Racker, E., 1976, The use of ion-exchange resins for studying ion transport in biological systems, Anal. Biochem. 72:57–65.PubMedCrossRefGoogle Scholar
  49. Gershoni, J. M., Palade, G. E., Hawrot, E., Klimowicz, D. W., and Lentz, T. L., 1982, Analysis of α-bungarotoxin binding to Torpedo acetylcholine receptor by electrophoretic transfer techniques, J. Cell. Biol. 95:422a.Google Scholar
  50. Goldberg, G., Mochly-Rosen, D., Fuchs, S., and Lass, Y., 1983, Monoclonal antibodies modify acetylcholine-induced ionic channel properties in cultured myoballs, J. Membr. Biol. 76:123–128.PubMedCrossRefGoogle Scholar
  51. Gonzalez-Ros, J. M., Paraschos, A., and Martinez-Carrion, M., 1980, Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids, Proc. Natl. Acad. Sci. U.S.A. 77:1796–1800.PubMedCrossRefGoogle Scholar
  52. Gonzalez-Ros, J. M., Llanillo, M., Paraschos, A., and Martinez-Carrion, M. 1982, Lipid environment of acetycholine receptor from Torpedo californica, Biochemistry 21:3467–3474.CrossRefGoogle Scholar
  53. Gonzalez-Ros, J. M., Ferragut, J. A., and Martinez-Carrion, M., 1984, Binding of anti-acetylcholine.Google Scholar
  54. receptor antibodies inhibits the acetylcholine receptor mediated cation flux, Biochem. Biophys. Res. Commun. 120:368-375.Google Scholar
  55. Gullick, W. J., and Lindstrom, J. M., 1983, Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica, Biochemistry 22:3312–3320.CrossRefGoogle Scholar
  56. Gullick, W. J., Tzartos, S., and Lindstrom, J. 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. I. Peptide mapping, Biochemistry 20:2173–2180.PubMedCrossRefGoogle Scholar
  57. Guy, H. R., 1984, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys J. 45:249–261.PubMedCrossRefGoogle Scholar
  58. Gysin, R., Wirth, M., and Flanagan, S. D., 1981, Structural heterogeneity and subcellular distribution of nicotinic synapse-associated proteins, J. Biol. Chem. 256:11373–11376.PubMedGoogle Scholar
  59. Haggerty, J. G., and Froehner, S. C., 1981, Restoration of 125I-α-bungarotoxin binding activity to the a subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate, J. Biol. Chem. 256:8294–8297.PubMedGoogle Scholar
  60. Hamamoto, T., and Montai, M., 1986, Functional reconstitution of bacterial cytochrome oxidases in planar lipid bilayers, Methods Enzymol. 126:123–138.PubMedCrossRefGoogle Scholar
  61. Hamill, O. P., and Sakmann, B., 1981, Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells, Nature 294:462–464.PubMedCrossRefGoogle Scholar
  62. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F., 1981, Improved patch-clamp techniques for high resolution current recording from cells and cell-free patches, Pfluegers Arch. 391:85–100.CrossRefGoogle Scholar
  63. Hamilton, S. L., McLaughlin, M., and Karlin, A., 1979, Formation of disulfide-linked oligomers of acetylcholine receptor in membrane from Torpedo electric tissue, Biochemistry 18:155–163.PubMedCrossRefGoogle Scholar
  64. Heidmann, T., and Changeux, J.-P., 1979, Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata, Eur. J. Biochem. 94:255–279.CrossRefGoogle Scholar
  65. Heidmann, T., and Changeux, J.-P., 1980, Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata in the millisecond time range: Resolution of an intermediate conformational transition and evidence for positive cooperative effects, Biochem. Biophys. Res. Commun. 97:880-896.Google Scholar
  66. Heidmann, T., Sobel, A., Popot, J.-L., and Changeux, J.-P., 1980, Reconstitution of a functional acetylcholine receptor: Conservation of the conformational and allosteric transitions and recovery of the permeability response role of lipids, Eur. J. Biochem. 110:35–55.PubMedCrossRefGoogle Scholar
  67. Hess, G. P., Cash, D. J., and Aoshima, H., 1983, Acetylcholine receptor-controlled ion translocation: Chemical kinetic investigations of the mechanism, Annu. Rev. Biophys. Bioeng. 12:443–473.PubMedCrossRefGoogle Scholar
  68. Horn, R., and Patlak, J., 1980, Single channel currents from excised patches of muscle membrane, Proc. Natl. Acad. Sci. U.S.A. 77:6930–6934.PubMedCrossRefGoogle Scholar
  69. Horn, R., Brodwick, M. S., and Dickey, W. D., 1980, Asymmetry of the acetylcholine channel revealed by quaternary anesthetics, Science 210:205–207.PubMedCrossRefGoogle Scholar
  70. Huganir, R. L., and Greengard, P., 1983, C-AMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 80:1130–1134.PubMedCrossRefGoogle Scholar
  71. Huganir, R. L., and Racker, E., 1980, Endogenous and exogenous proteolysis of the acetylcholine receptor from Torpedo californica, J. Supramol. Struct. 14:215–221.CrossRefGoogle Scholar
  72. Huganir, R. L., and Racker, E., 1982, Properties of proteoliposomes reconstituted with acetylcholine receptor from Torpedo californica, J. Biol. Chem. 257:9372–9378.Google Scholar
  73. Huganir, R. L., Schell, M. A., and Racker, E., 1979, Reconstitution of the purified acetylcholine receptor from Torpedo californica, FEBS Lett. 108:155–160.CrossRefGoogle Scholar
  74. Huganir, R. L., Miles, K., and Greengard, P. 1984, Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase, Proc. Natl. Acad. Sci. U.S.A. 81:6968–6972.PubMedCrossRefGoogle Scholar
  75. Jackson, M. B., Lecar, H., Askanas, V., and Engel, W. K., 1982, Single cholinergic receptor channel currents in cultured human muscle, J. Neurosci. 2:1465-1473.Google Scholar
  76. Jackson, M. B., Wong, B. S., Morris, C. E., Lecar, H., and Christian, C. N., 1983, Successive openings of the same acetylcholine receptor-channel are correlated in their open times, Biophys. J. 42:109–114.PubMedCrossRefGoogle Scholar
  77. Kagawa, Y., and Racker, E. 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation: XXV Reconstitution of vesicles catalyzing 32Pi-ATP exchange, J. Biol. Chem. 246:5477–5487.Google Scholar
  78. Kao, P. W., Dwork, A. J., Kaldany, R. R.-J., Silver, M. L., Wideman, J., Stein, S., and Karlin, A., 1984, Identification of the a subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site, J. Biol. Chem. 259:11662–11665.PubMedGoogle Scholar
  79. Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: The Cell Surface and Neuronal Function (G. Poste, G. Nicholson, and C. Cotman, eds.), pp. 191–260, Elsevier/North-Holland Biomedical Press, New York.Google Scholar
  80. Karlin, A., Weill, C. L., McNamee, M. G., and Valderrama, R., 1975, Facets of the structures of acetylcholine receptors from electrophorus and Torpedo, Cold Spring Harbor Symp. Quant. Biol. 40:203–213.CrossRefGoogle Scholar
  81. Karlin, A., Cox, R., Kaldany, R.-R., Lobel, P., and Holtzman, E., 1983, The arrangement and functions of the chains of the acetylcholine receptor of Torpedo electric tissue, Cold Spring Harbor Symp. Quant. Biol. 48:1–8.PubMedCrossRefGoogle Scholar
  82. Karlsson, E., Arnberg, H., and Eaker, D., 1971, Isolation of the principal neurotoxins of two Naja naja subspecies, Eur. J. Biochem. 21:1–16.PubMedCrossRefGoogle Scholar
  83. Katz, B., and Thesleff, S., 1957, A study of the “desensitization” produced by acetylcholine at the motor end-plate, J. Physiol. (Lond.) 138:63-80.Google Scholar
  84. Kilian, P. L., Dunlap, C. R., Mueller, P., Schell, M. A., Huganir, R. L., and Racker, E., 1980, Reconstitution of acetylcholine receptor from Torpedo californica with highly purified phospholipids: Effects of α-tocopherol, phylloquinone and other terpenoid quinones, Biochem. Biophys. Res. Commun. 93:409-414.Google Scholar
  85. Kistler, J., Stroud, R. M., Klymkowsky, M. W., Lalancette, R. A., and Fairclough, R. H., 1982, Structure and function of an acetylcholine receptor, Biophys. J. 37:371–383.PubMedCrossRefGoogle Scholar
  86. Labarca, P., Lindstrom, J., and Montai, M., 1984a, Acetylcholine receptor in planar lipid bilayers: Characterization of the channel properties of the purified nicotinic acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayers, J. Gen. Physiol. 83:473–496.PubMedCrossRefGoogle Scholar
  87. Labarca, P., Lindstrom, J., and Montai, M., 1984b, The acetylcholine receptor channel from Torpedo californica has two open states, J. Neurosci. 4:502–507.PubMedGoogle Scholar
  88. Labarca, P., Rice, J., Fredkin, D., and Montai, M., 1985a, Kinetic analysis of channel gating: Application to the cholinergic receptor channel and to the chloride channel from Torpedo Californiea, Biophys. J. 47:469–478.CrossRefGoogle Scholar
  89. Labarca, P., Montai, M. S., Lindstrom, J., and Montai, M., 1985b, The occurrence of long openings in the purified cholinergic receptor channel increases with acetylcholine concentration, J. Neurosci. 5:3409–3413.PubMedGoogle Scholar
  90. Lee, T., Witzemann, V., Schimerlik, M., and Raftery, M. A., 1977, Cholinergic ligand induced affinity changes in Torpedo californica acetylcholine receptor, Arch. Biochem. Biophys. 183:57–63.PubMedCrossRefGoogle Scholar
  91. Lindstrom, J., Lennon, V., Seybold, M., and Whittingham, S., 1976, Experimental autoimmune myasthenia gravis and myasthenia gravis: Biochemical and immunochemical aspects, Ann. N. Y. Acad. Sci. 274:254–274.PubMedCrossRefGoogle Scholar
  92. Lindstrom, J., Merlie, J., and Yogeeswaran, G., 1979, Biochemical properties of acetylcholine receptor subunits from Torpedo californica, Biochemistry 18:4465–4470.CrossRefGoogle Scholar
  93. Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M., and Montai, M., 1980, Purification of acetylcholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation, J. Biol. Chem. 255:8340–8350.PubMedGoogle Scholar
  94. Lindstrom, J., Einarson, B., and Tzartos, S., 1981a, Production and assay of antibodies to acetylcholine receptors, Methods Enzymol. 74:432–460.PubMedCrossRefGoogle Scholar
  95. Lindstrom, J. M., Tzartos, S. J., and Gullick, W. J., 1981b, Structure and function of acetylcholine receptors studies using monoclonal antibodies, Ann. N.Y. Acad. Sci. 377:1–19.PubMedCrossRefGoogle Scholar
  96. Lindstrom, J., Tzartos, S., Gullick, W., Hochschwender, S., Swanson, L., Sargent, P., Jacob, M., and Montai, M., 1983, Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscle, and brain and the autoimmune response to receptor in myasthenia gravis, Cold Spring Harbor Symp. Quant. Biol. 48:89–99.PubMedCrossRefGoogle Scholar
  97. Lindstrom, J., Criado, M., Hochschwender, S., Fox, J. L., and Sarin, V., 1984, Immunochemical tests of acetylcholine receptor subunit models, Nature 311:573–575.PubMedCrossRefGoogle Scholar
  98. Lowry, O. H., Rosebrough, N. Y., Farr, A. L., and Randall, R. Y., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  99. Magleby, K. L., and Pallotta, B. S., 1981, A study of desensitization of acetylcholine receptors using nerve-released transmitter in the frog, J. Physiol. (Lond.) 316:225-250.Google Scholar
  100. McNamee, M. G., and Ochoa, E. L. M., 1982, Reconstitution of acetylcholine receptor function in model membranes, Neuroscience 7:2305–2319.PubMedCrossRefGoogle Scholar
  101. McNamee, M. G., Ellena, J. F., and Dalziel, A. W., 1982, Lipid-protein interactions in membranes containing the acetylcholine receptor, Biophys. J. 37:103–104.PubMedCrossRefGoogle Scholar
  102. Merlie, J. P., and Sebbane, R., 1981, Acetylcholine receptor subunits transit a precursor pool before acquiring a bungarotoxin binding activity, J. Biol. Chem. 256:3605–3608.PubMedGoogle Scholar
  103. Merlie, J. P., Sebbane, R., Tzartos, S., and Lindstrom, J., 1982, Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells, J. Biol. Chem 257:2694–2701.PubMedGoogle Scholar
  104. Miller, C., and White, M. M., 1984, Dimeric structure of single chloride channels from Torpedo electroplax, Proc. Nail. Acad. Sci. U.S.A. 81:2772–2775.CrossRefGoogle Scholar
  105. Mishina, M., Kurosaki, T., Tibomatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs, Nature 307:604–608.PubMedCrossRefGoogle Scholar
  106. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S., 1985, Location of functional regions of acetylcholine receptor α-subunit by site-directed mutagenesis, Nature 313:364–369.PubMedCrossRefGoogle Scholar
  107. Montai, M., 1974, Formation of bimolecular membranes from lipid monolayers, Methods. Enzymol. 32:545–556.CrossRefGoogle Scholar
  108. Montai, M., 1985, Functional reconstitution of membrane proteins in planar lipid bilayer membranes, in: Techniques for Analysis of Membrane Proteins (C. I. Ragan and R. Cherry, eds.) Chapman and Hall, London (in press).Google Scholar
  109. Montai, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of the electrical properties, Proc. Natl. Acad. Sci. U.S.A. 69:3561–3566.CrossRefGoogle Scholar
  110. Montai, M., Darszon, A., and Schindler, H., 1981, Functional reassembly of membrane proteins in planar lipid bilayers, Q. Rev. Biophys. 14:1–79.CrossRefGoogle Scholar
  111. Montai, M., Labarca, P., Fredkin, D. R., Suarez-Isla, B. A., and Lindstrom, J., 1984, Channel properties of the purified acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayer membranes, Biophys. J. 45:165–174.CrossRefGoogle Scholar
  112. Moore, H.-P. H., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance, Proc. Natl. Acad. Sci. U.S.A. 77:4509–4513.PubMedCrossRefGoogle Scholar
  113. Moore, H.-P., Hartig, P. R., and Raftery, M. A., 1979, Correlation of polypeptide composition with functional events in acetylcholine receptor-enriched membranes from Torpedo californica, Proc. Natl. Acad. Sci. U.S.A. 76:6265–6269.CrossRefGoogle Scholar
  114. Neher, E., and Sakmann, B., 1976, Single channel currents recorded from membrane of denervated frog muscle fibers, Nature 260:799–802.PubMedCrossRefGoogle Scholar
  115. Neher, E., and Steinbach, J. H., 1978, Local anesthetics transiently block currents through single acetylcholine receptor channels, J. Physiol. (Lond.) 277:153-176.Google Scholar
  116. Nelson, N., Anholt, R. Lindstrom, J., and Montai, M., 1980, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 77:3057–3061.PubMedCrossRefGoogle Scholar
  117. Nestler, E. J., Walaas, S. I., and Greengard, P., 1984, Neuronal phosphoproteins: Physiological and chemical implications, Science 225:1357–1367.PubMedCrossRefGoogle Scholar
  118. Neubig, R. R., and Cohen, J. B., 1980, Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times, Biochemistry 19:2770–2779.PubMedCrossRefGoogle Scholar
  119. Neubig, R. R., Krodel, E. K., Boyd, N. D., and Cohen, J. B., 1979, Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides, Proc. Natl. Acad. Sci. U.S.A. 76:690–694.PubMedCrossRefGoogle Scholar
  120. Neumann, D., Fridkin, M., and Fuchs, S., 1984, Anti-acetylcholine receptor response achieved by immunization with a synthetic peptide from the receptor sequence, Biochem. Biophys. Res. Commun. 121:673-679.Google Scholar
  121. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Fusutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299:793–797.PubMedCrossRefGoogle Scholar
  122. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983a, Primary structures of β and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences, Nature 301:251–255.PubMedCrossRefGoogle Scholar
  123. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983b, Structural homology of Torpedo californica acetylcholine receptor subunits, Nature 302:528–532.PubMedCrossRefGoogle Scholar
  124. Oakley, B. R., Kirsch, D. R., and Morris, N. R. 1980, A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels, Anal. Biochem. 105:361–363.PubMedCrossRefGoogle Scholar
  125. Ochoa, E. L. M., Dalziel, A. W., and McNamee, M. G., 1983, Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition, Biochim. Biophys. Acta 727:151–162.PubMedCrossRefGoogle Scholar
  126. Ogden, D. C., Siegelbaum, S. A., and Colquhoun, D., 1981, Block of acetylcholine-activated ion channels by an uncharged local anesthetic, Nature 289:596–598.PubMedCrossRefGoogle Scholar
  127. Popot, J.-L., Cartaud, J., and Changeux, J.-P, 1981, Reconstitution of a functional acetylcholine receptor: Incorporation into artificial lipid vesicles and pharmacology of the agonist-controlled permeability changes, Eur. J. Biochem. 118:203–214.PubMedCrossRefGoogle Scholar
  128. Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208:1454–1457.PubMedCrossRefGoogle Scholar
  129. Raftery, M. A., Dunn, S. M. J., Conti-Tronconi, B. M., Middlemas, D. S., and Crawford, R. D., 1983, The nicotinic acetylcholine receptor: Subunit structure, functional binding sites and ion transport properties, Cold Spring Harbor Symp. Quant. Biol. 48:21–33.PubMedCrossRefGoogle Scholar
  130. Ravdin, P. M., and Berg, D. K., 1979, Inhibition of neuronal acetylcholine sensitivity by α-toxins from Bungarus multicinctus venum, Proc. Natl. Acad. Sci. U.S.A. 76:2072–2076.PubMedCrossRefGoogle Scholar
  131. Reynolds, J. A., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17:2035–2038.CrossRefGoogle Scholar
  132. Ross, M. J., Klymkowsky, M. W., Agard, D. A., and Stroud, R. M., 1977, Structural studies of a membrane-bound acetylcholine receptor from Torpedo californica, J. Mol. Biol. 166:635–659.CrossRefGoogle Scholar
  133. Ruff, R. L., 1982, The kinetics of local anesthetic blockage of end-plate channels, Biophys. J. 37:625–631.PubMedGoogle Scholar
  134. St. John, P. A., Froehner, S. C., Goodenough, D. A., and Cohen, J. B., 1982, Nicotinic postsynaptic membranes from Torpedo: Sidedness, permeability to macromolecules, and topography of major polypeptides, J. Cell. Biol. 92:333–342.PubMedCrossRefGoogle Scholar
  135. Sakmann, B., Patlak, J., and Neher, E., 1980, Single acetylcholine-activated channels show burstkinetics in presence of desensitizing concentrations of agonist, Nature 286:71–73.PubMedCrossRefGoogle Scholar
  136. Sargent, P. B., Hedges, B. E., Tsavaler, L., Clemons, L., Tzartos, S., and Lindstrom, J. M., 1984, The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies, J. Cell Biol. 98:609–618.PubMedCrossRefGoogle Scholar
  137. Schindler, H., 1979, Exchange and interactions between lipid layers at the surface of a liposome solution, Biochim. Biophys. Acta 555:316–336.PubMedCrossRefGoogle Scholar
  138. Schindler, H., 1980, Formation of planar bilayers from artificial or native membrane vesicles, FEBS Lett. 122:77-79.Google Scholar
  139. Schindler, H., 1982, Concepts and techniques for membrane transport reconstitution, in: Transport in Biomembranes: Model Systems and Reconstitution (R. Antolini, A. Gliozzi, and A. Gorio, eds.), pp. 75–85, Raven Press, New York.Google Scholar
  140. Schindler, H., and Feher, G., 1976, Branched bimolecular lipid membranes, Biophys. J. 16:1109–1113.PubMedCrossRefGoogle Scholar
  141. Schindler, H., and Quast, U., 1980, Functional acetylcholine receptor from Torpedo marmorata in planar membranes, Proc. Natl. Acad. Sci. U.S.A. 77:3052–3056.PubMedCrossRefGoogle Scholar
  142. Schindler, H., Spillecke, F., and Neumann, E., 1984, Different channel properties of Torpedo acetylcholine receptor monomers and dimers reconstituted in planar membranes, Proc. Natl. Acad. Sci. U.S.A. 81:6222–6226.PubMedCrossRefGoogle Scholar
  143. Schuerholz, T., and Schindler, H., 1983, Formation of lipid-protein bilayers by micropipette-guided contact of two monolayers, FEBS Lett. 152:187–190.CrossRefGoogle Scholar
  144. Sealock, R., 1982, Visualization at the mouse neuromuscular junction of a submembrane structure in common with Torpedo postsynaptic membranes, J. Neurosci. 2:918–923.PubMedGoogle Scholar
  145. Shah, D. O., and Schulman, J. M., 1967, Enzymic hydrolysis of various lecithin monolayers employing suface pressure and potential technique, J. Colloid Interface Sci. 25:107–119.CrossRefGoogle Scholar
  146. Sigworth, F. J., 1982, Fluctuations in the current through open ACh-receptor channels, Biophys. J. 37:309.Google Scholar
  147. Sine, S., and Taylor, P., 1979, Functional consequences of agonist-mediated state transitions in the cholinergic receptor, J. Biol. Chem. 254:3315–3325.PubMedGoogle Scholar
  148. Sine, S. M., and Taylor, P., 1980, The relationship between agonist occupation and the permeability response of the cholinergic receptor revealed by bound cobra α-toxin, J. Biol. Chem. 255:10144–10156.PubMedGoogle Scholar
  149. Sobel, A., Weber, M., and Changeux, J.-P., 1977, Large-scale purification of the acetylcholine receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ, Eur. J. Biochem. 80:215–224.PubMedCrossRefGoogle Scholar
  150. Strader, C. D., and Raftery, M. A., 1980, Topographic studies of Torpedo acetylcholine receptor subunits as a transmembrane complex, Proc. Natl. Acad. Sci. U.S.A. 77:5807–5811.PubMedCrossRefGoogle Scholar
  151. Strader, C. B. D., Revel, J.-P., and Raftery, M. A., 1979, Demonstration of the transmembrane nature of the acetylcholine receptor by labeling with anti-receptor antibodies, J. Cell Biol. 83:499–510.PubMedCrossRefGoogle Scholar
  152. Suarez-Isla, B. A., Wan, K., Lindstrom, J., and Montai, M., 1983, Single channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets, Biochemistry 22:2319–2323.PubMedCrossRefGoogle Scholar
  153. Tank, D. W., Huganir, R. L., Greengard, P., and Webb, W. W., 1983, Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 80:5129–5133.PubMedCrossRefGoogle Scholar
  154. Tarrab-Hazdai, R., Geiger, B., Fuchs, S., and Amsterdam, A., 1978, Localization of acetylcholine receptor in excitable membrane from the electric organ of Torpedo: Evidence for the exposure of receptor antigenic sites on both sides of the membrane, Proc. Natl. Acad. Sci. U.S.A. 75:2497–2501.PubMedCrossRefGoogle Scholar
  155. Trautmann, A., and Feltz, A., 1980, Open time of channels activated by binding of two distinct agonists, Nature 286:291–293.PubMedCrossRefGoogle Scholar
  156. Tzartos, S. J., and Changeux, J.-P., 1983, High affinity binding of α-bungarotoxin to the purified α-subunit and to its 27,000-dalton proteolytic peptide from Torpedo marmorata acetylcholine receptor: Requirement for sodium dodecyl sulfate, EMBO J. 2:381–387.PubMedGoogle Scholar
  157. Tzartos, S. J., and Lindstrom, J. M., 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. U.S.A. 77:755–759.PubMedCrossRefGoogle Scholar
  158. Tzartos, S., and Lindstrom, J., 1981, Production and characterization of monoclonal antibodies for use as probes of acetylcholine receptors, in: Monoclonal Antibodies in Endocrine Research (R. Fellows and G. Eisenbarth, eds.), pp. 69–86, Raven Press, New York.Google Scholar
  159. Walker, J. W., McNamee, M. G., Pasquale, E., Cash, D. J., and Hess, G. P., 1981, Acetylcholine receptor inactivation in Torpedo californica electroplax membrane vesicles: Detection of two processes in the millisecond and second time regions, Biochem. Biophys. Res. Commun. 100:86–90.PubMedCrossRefGoogle Scholar
  160. Walker, J. W., Takeyasu, K., and McNamee, M. G., 1982, Activation and inactivation kinetics of Torpedo Californie a acetylcholine receptor in reconstituted membranes, Biochemistry 21:5384–5389.PubMedCrossRefGoogle Scholar
  161. Wan, K. K., and Lindstrom, J. M., 1985, Effects of monoclonal antibodies on the function of acetylcholine receptors purified from Torpedo Californie a and reconstituted into vesicles, Biochemistry 24:1212–1221.PubMedCrossRefGoogle Scholar
  162. Webber, M., David-Pfeuty, T., and Changeux, J-P., 1975, Regulation of binding properties of the nicotinic receptor protein by cholinergic ligands in membrane fragments from Torpedo marmorata, Proc. Natl. Acad. Sci. U.S.A. 72:3443–3447.CrossRefGoogle Scholar
  163. Weiland, G., and Taylor, P., 1979, Ligand specificity of state transitions in the cholinergic receptor: Behavior of agonists and antagonists, Mol. Pharmacol. 15:197–212.PubMedGoogle Scholar
  164. Weill, C. L., McNamee, M. G., and Karlin, A., 1974, Affinity labeling of purified acetylcholine receptor from Torpedo californica, Biochem. Biophys. Res. Commun. 61:997–1003.CrossRefGoogle Scholar
  165. Wennogle, L. P., and Changeux, J.-P., 1980, Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis, Eur. J. Biochem. 106:381–393.PubMedCrossRefGoogle Scholar
  166. Wennogle, L. P., Oswald, R., Saitoh, T., and Changeux, J.-P., 1981, Dissection of the 66,000 dalton subunit of the acetylcholine receptor, Biochemistry 20:2492–2497.PubMedCrossRefGoogle Scholar
  167. Wilmsen, V., Methfessel, C., Hanke, N., and Boheim, G., 1983, Channel current fluctuation studies with solvent-free lipid bilayers using Neher-Sakmann pipettes, in: Physical Chemistry of Transmembrane Ion Motions (G. Spach, ed.), pp. 479–485, Elsevier, Amsterdam.Google Scholar
  168. Wise, D. S., Karlin, A., and Schoenborn, B. P., 1979, An analysis by low-angle neutron scattering of the structure of the acetylcholine receptor from Torpedo californica in detergent solution, Biophys. J. 28:473–496.PubMedCrossRefGoogle Scholar
  169. Wu, W. C. S., and Raftery, M. A., 1979, Carbamylcholine-induced rapid cation efflux from reconstituted membrane vesicles containing purified acetylcholine receptor, Biochem. Biophys. Res. Commun. 89:26–35.PubMedCrossRefGoogle Scholar
  170. Wu, W. C. S., and Raftery, M. A., 1981, Functional properties of acetylcholine receptor monomeric and dimeric forms in reconstituted membranes, Biochem. Biophys. Res. Commun. 99:436–444.PubMedCrossRefGoogle Scholar
  171. Wu, W. C. S., Moore, H.-P., and Raftery, M. A., 1981, Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptors, Proc. Natl. Acad. Sci. U.S.A. 78:775–779.PubMedCrossRefGoogle Scholar
  172. Young, E. F., Ralston, E., Blake, J., Ramachandran, J., Hall, Z. W., and Stroud, R. M., 1985, Topological mapping of acetylcholine receptor: Evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide, Proc. Natl. Acad. Sci. U.S.A. 82:626–630.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Mauricio Montal
    • 1
  • Robert Anholt
    • 1
  • Pedro Labarca
    • 1
  1. 1.Departments of Biology and PhysicsUniversity of California San DiegoLa JollaUSA

Personalised recommendations