Geological Significance of Marine Biogenic Sedimentary Structures

  • Charles W. Byers
Part of the Topics in Geobiology book series (TGBI, volume 100)

Abstract

The “geological significance” of traces encompasses a huge range of topics; to survey the field even briefly would require an entire book and probably multiple authors. Fortunately a major review volume was published within the last decade (Frey, 1975), and a diversity of topics were addressed. In addition, the revised Volume W of the Treatise on Invertebrate Paleontology (Häntzschel, 1975), which covers the systematics of trace fossils, also appeared recently. These two books have served to provide a solid base for research in trace fossils in terms of current systematics and concepts of classification, how traces are made and preserved, and the relation of traces to sedimentology, biostratigraphy, paleontology, and paleoecology.

Keywords

Storm Surge Black Shale Lower Cambrian Trace Fossil Deposit Feeder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ager, D. V., and Wallace, P., 1970, The distribution and significance of trace fossils in the uppermost Jurassic rocks of the Boulonnais, northern France, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 1–18, Seel House Press, Liverpool.Google Scholar
  2. Allen, J. R. L., 1965, Late Quaternary Niger Delta, and adjacent areas: Sedimentary environments and lithofacies, Am. Assoc. Pet. Geol. Bull. 49: 547–600.Google Scholar
  3. Allen, J. R. L., 1970, Physical Processes of Sedimentation, American Elsevier, New York, 248 pp.Google Scholar
  4. Alpert, S. P., 1977, Trace fossils and the basal Cambrian boundary, in: Trace Fossils 2 ( T. P. Crimes and J. C. Harper, eds.), pp. 1–8, Seel House Press, Liverpool.Google Scholar
  5. Armentrout, J. M., 1980, Ophiomorpha from upper bathyal Eocene subsea fan facies, northwestern Washington (Abstr.), Am. Assoc. Pet. Geol. Bull. 64: 670–671.Google Scholar
  6. Bambach, R. K., Kreisa, R. D., and Whitehurst, H. F., 1978, Storm reworked but untransported faunal assemblages in Paleozoic age shelf environments, Geol. Soc. Am. Abstr. 10: 362.Google Scholar
  7. Banks, N. L., 1970, Trace fossils from the late Precambrian and Lower Cambrian of Finnmark, Norway, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 19–32, Seel House Press, Liverpool.Google Scholar
  8. Barnes, A. G., and Smith, A. G., 1964, Some markings associated with ripple-marks from the Proterozoic of North America, Nature 201: 1018–1019.Google Scholar
  9. Bassler, R. S., 1941, A supposed jellyfish from the Pre-Cambrian of the Grand Canyon, Proc. U. S. Nat. Mus. 89: 519–522.Google Scholar
  10. Bennett, R. H., Bryant, W. R., and Keller, G. H., 1977, Clay fabric and geotechnical properties of selected submarine sediment cores from the Mississippi Delta, Natl. Oceanic Atmos. Adm. U. S. Prof. Pap. 9, 86 pp.Google Scholar
  11. Bergstrom, J., 1970, Rusophycus as an indicator of early Cambrian age, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 35–42, Seel House Press, Liverpool.Google Scholar
  12. Berner, R. A., 1971, Principles of Chemical Sedimentology, McGraw-Hill, New York, 240 pp.Google Scholar
  13. Bowen, Z. P., Rhoads, D. C., and McAlester, A. L., 1974, Marine benthic communities in the Upper Devonian of New York, Lethaia 7: 93–120.Google Scholar
  14. Bromley, R. G., 1975, Trace fossils at omission surfaces, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 399–428, Springer-Verlag, New York.Google Scholar
  15. Byers, C. W., 1973, Biogenic structures of black shale paleoenvironments, Ph.D. dissertation, Yale University, New Haven, Connecticut, 134 pp.Google Scholar
  16. Byers, C. W., 1974, Shale fissility: Relation to bioturbation, Sedimentology 21: 479–484.Google Scholar
  17. Byers, C. W., 1976, Bioturbation and the origin of the metazoans: Evidence from the Belt Supergroup, Montana, Geology 4: 565–567.Google Scholar
  18. Byers, C. W., 1977a, Biofacies patterns in euxinic basins: A general model, in: Deep-water Carbonate Environments (H. E. Cook and P. Enos, eds.), Soc. Econ. Paleontol. Mineral Spec. Publ. 25: 5–17.Google Scholar
  19. Byers, C. W., 1977b, Ichnofacies and paleoenvironments in the Upper Cambrian sandstones of Wisconsin (Abstr.), J. Paleontol. 51 (Suppl. to No. 2): 5.Google Scholar
  20. Byers, C. W., 1980, Bioturbation as factor in hydrocarbon generation—Example from Mowry Shale (Abstr.), Am. Assoc. Pet. Geol. Bull. 64: 685.Google Scholar
  21. Byers, C. W., and Dott, R. H., Jr., 1980, Depositional environments in Upper Cambrian Jordan Sandstone in Wisconsin (Abstr.), Am. Assoc. Pet. Geol. Bull. 64: 685.Google Scholar
  22. Byers, C. W., and Stasko, L. E., 1978, Trace fossils and sedimentologic interpretation—McGregor Member of Platteville Formation (Ordovician) of Wisconsin, J. Sediment Petrol. 48: 1303–1310.Google Scholar
  23. Chamberlain, C. K., 1975, Trace fossils in DSDP cores of the Pacific, J. Paleontol. 49: 1074–1096.Google Scholar
  24. Clemmey, H., 1976, World’s oldest animal traces, Nature 261: 576–578.Google Scholar
  25. Cloud, P. E., Jr., 1968, Pre-metazoan evolution and the origins of the metazoa, in: Evolution and Environment ( E. T. Drake, ed.), pp. 1–72, Yale University Press, New Haven.Google Scholar
  26. Cloud, P. E., 1978, World’s oldest animal traces, Nature 275: 344.Google Scholar
  27. Cluff, R. M., 1976, Paleoecology and depositional environment of the Mowry Shale (Albian), Black Hills region, M.S. thesis, University of Wisconsin, Madison, 104 pp.Google Scholar
  28. Cowie, J. W., and Glaessner, M. F., 1975, The Precambrian–Cambrian boundary: A symposium, Earth Sci. Rev. 11: 209–251.Google Scholar
  29. Cowie, J. W., and Spencer, A. M., 1970, Trace fossils from the Late Precambrian/Lower Cambrian of East Greenland, in: Trace Fossils (T. P. Crimes and J. C. Harper, eds.), pp. 91–100, Seel House Press, Liverpool.Google Scholar
  30. Crimes, T. P., 1970, A facies analysis of the Cambrian of Wales, Palaeogeogr. Palaeoclimatol. Palaeoecol. 7: 113–170.Google Scholar
  31. Crimes, T. P., 1975, The stratigraphical significance of trace fossils, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 109–130, Springer-Verlag, New York.Google Scholar
  32. Crimes, T. P., 1977, Trace fossils of an Eocene deep-sea sand fan, northern Spain, in: Trace Fossils 2 ( T. P. Crimes and J. C. Harper, eds.), pp. 71–90, Seel House Press, Liverpool.Google Scholar
  33. Crimes, T. P., Legg, I., Marcos, A., and Arboleya, M., 1977, ?Late Precambrian–low Lower Cambrian trace fossils from Spain, in: Trace Fossils 2 (T. P. Crimes and J. C. Harper, eds.), pp. 91–138, Seel House Press, Liverpool.Google Scholar
  34. Dapples, E. C., 1942, The effect of macro-organisms upon near-shore marine sediments, J. Sediment. Petrol. 12: 118–126.Google Scholar
  35. Dawson, W. C., 1978, Improvement of sandstone porosity during bioturbation (Abstr.), Am. Assoc. Pet. Geol. Bull. 62: 508–509.Google Scholar
  36. Delgado, D. J., 1980, Submarine diagenesis (aragonite dissolution, cementation by calcite, and dolomitization in Ordovician Galena Group, Upper Mississippi Valley (Abstr.), Am. Assoc. Pet. Geol. Bull. 64: 697.Google Scholar
  37. Driese, S. G., Byers, C. W., and Dott, R. H., Jr., 1981, Tidal deposition in the basal Upper Cambrian Mt. Simon Formation in Wisconsin, J. Sediment. Petrol. 51: 367–381.Google Scholar
  38. Durham, J. W., 1978, The probable metazoan biota of the Precambrian as indicated by the subsequent record, Annu. Rev. Earth Planet. Sci. 6: 21–42.Google Scholar
  39. Ekdale, A. A., 1977, Abyssal trace fossils in worldwide Deep Sea Drilling Project cores, in: Trace Fossils 2 ( T. P. Crimes and J. C Harper, eds.), pp. 163–182, Seel House Press, Liverpool.Google Scholar
  40. Ekdale, A. A., 1978, Trace fossils in Leg 42A cores, Init. Rept. Deep Sea Drilling Project XLII (Part 1 ): 821–827.Google Scholar
  41. Ekdale, A. A., 1980, Graphoglyptid burrows in modern deep-sea sediment, Science 207: 304–306.Google Scholar
  42. Ekdale, A. A., and Berger, W. H., 1978, Deep-sea ichnofacies: Modern organism traces on and in pelagic carbonates of the western equatorial Pacific, Palaeogeogr. Palaeoclimatol. Palaeoecol. 23: 263–278.Google Scholar
  43. Elders, C. A., 1975, Experimental approaches in neoichnology, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 513–536, Springer-Verlag, New York.Google Scholar
  44. Faul, H., 1950, Fossil burrows from the Precambrian Ajibik Quartzite of Michigan, J. Paleontol. 24: 102–106.Google Scholar
  45. Frarey, M. J., and McLaren, D. J., 1963, Possible metazoans from the Early Proterozoic of the Canadian Shield, Nature 200: 461–462.Google Scholar
  46. Frey, R. W., 1970, Trace fossils of the Fort Hays limestone member of the Niobrara Chalk (Upper Cretaceous), west-central Kansas Univ. Kans. Paleontol. Contrib. 53, 41 pp.Google Scholar
  47. Frey, R. W. (ed.), 1975, The Study of Trace Fossils, Springer-Verlag, New York, 562 pp.Google Scholar
  48. Frey, R. W., 1978, Behavioral and ecological implications of trace fossils, in: Trace Fossil Concepts (P. B. Basan, ed.), Soc. Econ. Paleontol. Mineral. Short Course 5: 49–75.Google Scholar
  49. Fursich, F. T., 1975, Trace fossils as environmental indicators in the Corallian of England and Normandy, Lethaia 8: 151–172.Google Scholar
  50. Germs, G. J. B., 1972, New shelly fossils from Nama Group, South West Africa, Am. J. Sci. 272: 752–761.Google Scholar
  51. Germs, G. J. B., 1973, Possible sprigginid worm and a new trace fossil from the Nama Group, South West Africa, Geology 1: 69–70.Google Scholar
  52. Glaessner, M. F., 1969, Trace fossils from the Precambrian and basal Cambrian, Lethaia 2: 369–393.Google Scholar
  53. Goldring, R., 1964, Trace-fossils and the sedimentary surface in shallow-water marine sediments, in: Deltaic and Shallow Marine Deposits ( L. M. J. U. van Straaten, ed.), pp. 136–143, Elsevier, New York.Google Scholar
  54. Gould, S. J., 1980, The promise of paleobiology as a nomothetic, evolutionary discipline, Paleobiology 6: 96–118.Google Scholar
  55. Häntzschel, W., 1975, Trace Fossils and Problematica, Treatise on Invertebrate Paleontology (C. Teichert, ed.), Volume W, Miscellanea (Supplement 1 ), Kansas University Press, Lawrence, 269 pp.Google Scholar
  56. Hofmann, H. J., 1967, Precambrian fossils(?) near Elliot Lake, Ontario, Science 156: 500–504.Google Scholar
  57. Hofmann, H. J., 1971, Precambrian fossils, pseudofossils and problematica in Canada, Geol. Surv. Can. Bull. 189, 146 p.Google Scholar
  58. Howard, J. D., 1972, Trace fossils as criteria for recognizing shorelines in stratigraphic record, in: Recognition of Ancient Sedimentary Environments (J. K. Rigby and W. K. Hamblin, eds.), Soc. Econ. Paleontol. Mineral. Spec. Publ. 16: 215–225.Google Scholar
  59. Howard, J. D., 1975, The sedimentological significance of trace fossils, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 131–146, Springer-Verlag, New York.Google Scholar
  60. Howard, J. D., 1978, Sedimentology and trace fossils, in: Trace Fossil Concepts (P. B. Basan, ed.), Soc. Econ. Paleontol. Mineral. Short Course 5: 13–47.Google Scholar
  61. Howard, J. D., and Elders, C. A., 1970, Burrowing patterns of haustoriid amphipods from Sapelo Island, Georgia, in: Trace Fossils (T. P. Crimes and J. C. Harper, eds.), pp. 243–262, Seel House Press, Liverpool.Google Scholar
  62. James, N. P., Kobluk, D. R., and Pemberton, S. G., 1977, The oldest macro borers: Lower Cambrian of Labrador, Science 197: 980–983.Google Scholar
  63. Kauffman, E. G., and Steidtmann, J. R., 1976, Are these the oldest metazoan trace fossils? Geol. Soc. Am. Abstr. 8: 947–948.Google Scholar
  64. Kern, J. P., 1978, Trails from the Vienna Woods, Palaeogeogr. Palaeoclimatol. Palaeoecol. 23: 231–262.Google Scholar
  65. Kitchell, J. A., 1979, Deep-sea foraging pathways: An analysis of randomness and resource exploitation, Paleobiology 5: 107–125.Google Scholar
  66. Kitchell, J. A., Kitchell, J. K., Clark, D. L., and Dangeard, L., 1978a, Deep-sea foraging behavior: Its bathymetric potential in the fossil record, Science 200: 1289–1291.Google Scholar
  67. Kitchell, J. A., Kitchell, J. K., Johnson, G. L., and Hunkins, K. L., 1978b, Abyssal traces and megafauna: Comparison of productivity, diversity and density in the Artic and Antarctic, Paleobiology 4: 171–180.Google Scholar
  68. Ksiazkiewicz, M., 1970, Observations on the ichnofauna of the Polish Carpathians, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 283–322, Seel House Press, Liverpool.Google Scholar
  69. Ksiazkiewicz, M., 1977, Trace fossils in the flysch of the Polish Carpathians, Paleontol. Pol. 36: 1–208.Google Scholar
  70. Kuenen, Ph. H., 1950, Marine Geology, John Wiley and Sons, New York, 568 pp.Google Scholar
  71. Larson, D. W., 1977, Paleoenvironment of the Mowry Shale Lower Cretaceous), western and central Wyoming, as determined from biogenic structures, M.S. thesis, University of Wisconsin, Madison, 121 pp.Google Scholar
  72. Moon, C. F., 1972, The microstructure of clay sediments, Earth Sci. Rev. 8: 303–321.Google Scholar
  73. Moore, D. G., and Scruton, P. C., 1957, Minor internal structures of some Recent unconsolidated sediments, Am. Assoc. Pet. Geol. Bull. 41: 2723–2751.Google Scholar
  74. Obradovich, J. D., and Peterman, Z. E., 1968, Geochronology of the Belt Series, Montana, Can. J. Earth Sci. 5: 737–747.Google Scholar
  75. Osgood, R. G., Jr., 1970, Trace fossils of the Cincinnati area, Palaeontogr. Am. VI(41):281–438. Osgood, R. G., Jr., and Szmuc, E. J., 1972, The trace fossil Zoophycos as an indicator of water depth, Bull. Am. Paleontol. 62: 1–22.Google Scholar
  76. Palij, V. M., 1974, On finding of the trace fossil in the Riphean deposits of the Ovruch Ridge, Rep. Acad. Sci. Ukr. SSR Ser. B. Geol. Geophys. Chem. Biol. Jahrg. 36: 34–37 [in Ukrainian].Google Scholar
  77. Pettijohn, F. J., 1957, Sedimentary Rocks, Harper and Brothers, New York, 718 pp.Google Scholar
  78. Porter, J., and Byers, C. W., 1979, Depositional environments of the Norwalk Member of the Jordan Formation (Upper Cambrian), Southwest Wisconsin, Geol. Soc. Am. Abstr. 11: 253Google Scholar
  79. Purser, B. H., 1969, Syn-sedimentary marine lithification of Middle Jurassic limestones of the Paris Basin, Sedimentology 12: 205–230.Google Scholar
  80. Reineck, H. E., 1967, Layered sediments of tidal flats, beaches, and shelf bottoms of the North Sea, in: Estuaries ( G. H. Lauff, ed.), pp. 191–206, American Association for the Advancement of Science, Washington, D. C.Google Scholar
  81. Rhoads, D. C., 1963, Rates of sediment reworking by Yoldia limatula in Buzzard’s Bay, Massachusetts and Long Island Sound, J. Sediment. Petrol. 33: 723–727.Google Scholar
  82. Rhoads, D. C., 1970, Mass properties, stability, and ecology of marine muds related to burrowing activity, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 391–406, Seel House Press, Liverpool.Google Scholar
  83. Rhoads, D. C., 1975, The paleoecologic and environmental significance of trace fossils, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 147–160, Springer-Verlag, New York.Google Scholar
  84. Rhoads, D. C., and Morse, J. W., 1971, Evolutionary and ecologic significance of oxygendeficient marine basins, Lethaia 4: 413–428.Google Scholar
  85. Roniewicz, P., and Pienkowski, G., 1977, Trace fossils of the Podhale flysch basin, in: Trace Fossils 2 ( T. P. Crimes and J. C. Harper, eds.), pp. 273–288, Seel House Press, Liverpool.Google Scholar
  86. Seilacher, A., 1956, Der Beginn des Kambriums als biologische Wende, Neues Jahrb. Geol. Palaeontol. Abh. 103: 155–180.Google Scholar
  87. Seilacher, A., 1958, Zur okologischen Charakteristik von Flysch und Molasse, Eclogae Geol. Heiv. 51: 1062–1078.Google Scholar
  88. Seilacher, A., 1964, Biogenic sedimentary structures, in: Approaches to Paleoecology ( J. Imbrie and N. Newell, eds.), pp. 296–316, John Wiley and Sons, New York.Google Scholar
  89. Seilacher, A., 1967, Bathymetry of trace fossils, Mar. Geol. 5: 413–428.Google Scholar
  90. Seilacher, A., 1974, Flysch trace fossils: Evolution of behavioural diversity in the deep-sea, Neues Jahrb. Geol. Palaeontol. Monatsh. 4: 233–245.Google Scholar
  91. Seilacher, A., 1977a, Pattern analysis of Paleodictyon and related trace fossils, in: Trace Fossils 2 ( T. P. Crimes and J. C. Harper, eds.), pp. 289–334, Seel House Press, Liverpool.Google Scholar
  92. Seilacher, A., 1977b, Evolution of trace fossil communities, in: Patterns of Evolution ( A. Hallam, ed.), pp. 359–376, Elsevier, New York.Google Scholar
  93. Seilacher, A., 1978, Use of trace fossil assemblages for recognizing depositional environments, in: Trace Fossil Concepts (P. B. Basan, ed.), Soc. Econ. Paleontol. Mineral. Short Course 5: 185–201.Google Scholar
  94. Shourd, M. L., and Levin, H. L., 1976, Chondrites in the upper Plattin Subgroup (Middle Ordovician) of eastern Missouri, J. Paleontol. 50: 260–268.Google Scholar
  95. Simpson, S., 1957, On the trace fossil Chondrites, Q. J. Geol. Soc. London 112: 475–499.Google Scholar
  96. Stanley, S. M., 1976, Fossil data and the Precambrian—Cambrian evolutionary transition, Am. J. Sci. 276: 56–76.Google Scholar
  97. Twenhofel, W. H., 1939, Environments of origin of black shales, Am. Assoc. Pet. Geol. Bull. 23: 1178–1198.Google Scholar
  98. Van Straaten, L. M. J. U., 1959, Minor structures of some Recent littoral and neritic sediments, Geol. Mijnbouw 21: 197–216.Google Scholar
  99. Walcott, C. D., 1899, Pre-Cambrian fossiliferous formations, Geol. Soc. Am. Bull. 10: 199–244.Google Scholar
  100. Walter, M. R., Oehler, J. H., and Oehler, D. Z., 1976, Megascopic algae 1,300 million years old from the Belt Supergroup, Montana: A reinterpretation of Walcott’s Helminthoidichnites, J. PaleAbstractontol. 50: 872–881.Google Scholar
  101. Warme, J. E., and McHuron, E. J., 1978, Marine borers: Trace fossils and geological significance, in: Trace Fossil Concepts (P. B. Basan, ed.), Soc. Econ. Paleontol. Mineral. Short Course 5: 77–131.Google Scholar
  102. Webby, B. D., 1970, Late Precambrian trace fossils from New South Wales, Lethaia 3: 79–109.Google Scholar
  103. Wheeler, H. E., and Quinlan, J. J., 1951, Pre-cambrian sinuous mud cracks from Idaho and Montana, J. Sediment. Petrol. 21: 141–146.Google Scholar
  104. Young, F. G., 1972, Early Cambrian and older trace fossils from the Southern Cordillera of Canada, Can. J. Earth Sci. 9: 1–17.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Charles W. Byers
    • 1
  1. 1.Department of Geology and GeophysicsUniversity of WisconsinMadisonUSA

Personalised recommendations