The Effects of Macrobenthos on Chemical Properties of Marine Sediment and Overlying Water

  • Robert C. Aller
Part of the Topics in Geobiology book series (TGBI, volume 100)


The composition of any environment or object is determined by a particular balance between material transport processes and chemical reactions within and around it. In the case of marine sedimentary deposits, the dominant agents of mass transport are often large bottom-dwelling animals that move particles and fluids during feeding, burrowing, tube construction, and irrigation. Such biogenic material transport has major direct and indirect effects on the composition of sediments and their overlying waters. In this chapter I review some of what is presently known about these effects, their implications for both chemical and biological properties of a deposit, and how they can be conceptualized in quantitative models.


Pore Water Overlie Water Deposit Feeder Molecular Diffusion Coefficient Solute Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller, R. C., 1978, Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry, Am. J. Sci. 278: 1185–1234.Google Scholar
  2. Aller, R. C., 1980a, Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment, Geochim. Cosmochim. Acta 44: 1955–1965.Google Scholar
  3. Aller, R. C., 1980b, Relationships of tube-dwelling benthos with sediment and overlying water chemistry, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 285–308, University of South Carolina Press, Columbia.Google Scholar
  4. Aller, R. C., 1980c, Diagenetic processes near the sediment—water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P), Adv. Geophys. 22: 237–350.Google Scholar
  5. Aller, R. C., 1982, Carbonate dissolution in shallow water marine sediments: Role of physical and biological reworking, J. Geol. 90: 79–95.Google Scholar
  6. Aller, R. C., and Cochran, J. K., 1976, 234Th/238U disequilibrium in near-shore sediment: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 29:37–50.Google Scholar
  7. Aller, R. C., and Dodge, R. E., 1974, Animal—sediment relations in a tropical lagoon, Discovery Bay, Jamaica, J. Mar. Res. 32: 209–232.Google Scholar
  8. Aller, R. C., and Yingst, J. Y., 1978, Biogeochemistry of tube-dwellings: A study of the sedentrary polychaete Amphitrite ornata (Leidy), J. Mar. Res. 36: 201–254.Google Scholar
  9. Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth Planet. Sci. Lett. 47: 161–175.Google Scholar
  10. Anderson, J. G., and Meadows, P. S., 1978, Microenvironments in marine sediments, Proc. R. Soc. Edinburgh Sect. B 76: 1–16.Google Scholar
  11. Amiard-Triquet, C., 1974, Etude experimentale de la contamination par le cerium 144 et le fer 59 d’un sédiment à Arenicola marina L. (Annelida Polychete), Cah. Biol. Mar. 15: 483–494.Google Scholar
  12. Aston, S. R., and Chester, R., 1973, The influence of suspended particles on the precipitation of iron in natural waters, Estuarine Coastal Mar. Sci. 1: 225–231.Google Scholar
  13. Baas-Beckling, L. G. M., Kaplan, I. R., and Moore, D., 1960, Limits of the natural environment in terms of pH and oxidation—reduction potentials, J. Geol. 68: 243–284.Google Scholar
  14. Bambach, R. K., and Sepkoski, J. J., Jr., 1979, The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic, Geol. Soc. Am. 11: 383.Google Scholar
  15. Baumfalk, Y. A., 1979, Heterogeneous grain size distribution in tidal flat sediment caused by bioturbation activity of Arenicola marina (Polychaeta), Neth. J. Sea Res. 13: 428–440.Google Scholar
  16. Bell, S. S., Watzin, M. C., and Coull, B. C., 1978, Biogenic structure and its effect on the spatial heterogeneity of meiofauna in a salt marsh, J. Exp. Mar. Biol. Ecol. 35: 99–107.Google Scholar
  17. Benninger, L. K., Aller, R. C., Cochran, J. K., and Turekian, K. K., 1979, Effects of biological sediment mixing on the 270Pb chronology and trace metal distribution in a Long Island Sound sediment core, Earth Planet. Sci. Lett. 43: 241–259.Google Scholar
  18. Ben-Yaakov, S., 1973, pH buffering of pore water of recent anoxic marine sediments, Limnol. Oceanogr. 18: 86–94.Google Scholar
  19. Berner, R. A., 1974, Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus and silicon in anoxic marine sediments, in: The Sea ( E. D. Goldberg, ed.), Volume 5, pp. 427–450, John Wiley and Sons, New York.Google Scholar
  20. Berner, R. A., 1976a, The benthic boundary layer from the viewpoint of a geochemist, in: The Benthic Boundary Layer (I. N. McCave, ed.), pp. 33–55, Plenum Press, New York. Berner, R. A., 1976b, Inclusion of adsorption in the modelling of early diagenesis, Earth Planet. Sci. Lett. 29: 333–340.Google Scholar
  21. Berner, R. A., 1980, Early Diagenesis—A Theoretical Approach, Princeton University Press, Princeton, New Jersey.Google Scholar
  22. Berner, R. A., 1981, A rate model for organic matter decomposition during bacterial sulfate reduction in marine sediments, Colloq. Int. C.N.R.S. 293: 35–44.Google Scholar
  23. Billen, G., 1978, A budget of nitrogen recycling in North Sea sediments off the Belgian coast, Estuarine Coastal Mar. Sci. 7: 127–146.Google Scholar
  24. Brenchley, G. A., 1978, On the regulation of marine infaunal assemblages at the morphological level: A study of the interactions between sediment stabilizers, destabilizers, and their sedimentary environment, Ph.D. dissertation, Johns Hopkins University, Baltimore, Maryland.Google Scholar
  25. Cadée, G. C., 1976, Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea, Neth. J. Sea Res. 10: 440–460.Google Scholar
  26. Carpenter, R., Peterson, M. L., and Bennett, J. T., 1982, 210Pb-derived sediment accumulation and mixing rates for the Washington continental slope, Mar. Geol. 48: (in press).Google Scholar
  27. Claypool, G. E., and Kaplan, I. R., 1974, The origin and distribution of methane in marine sediments, in: Natural Gases in Marine Sediments ( I. R. Kaplan, ed.), pp. 99–139, Plenum Press, New York.Google Scholar
  28. Cochran, J. K., and Aller, R. C., 1979, Particle reworking in sediments from the New York Right Apex: Evidence from 234Th/238U disequilibrium, Estuarine Coastal Mar. Sci. 9: 739–747.Google Scholar
  29. Coyer, P. E., and Mangum, C. P., 1973, Effect of temperature on active and resting metabolism in polychaetes, in: Effects of Temperature on Ectothermic Organisms ( W. Wieser, ed.), pp. 173–180, Springer-Verlag, New York.Google Scholar
  30. Cullen, D. J., 1973, Bioturbation of superficial marine sediments by interstitial meiobenthos, Nature 242: 323–324.Google Scholar
  31. Dapples, E. C., 1942, The effect of macro-organisms upon near-shore marine sediments, J. Sediment. Petrol. 12: 118–126.Google Scholar
  32. DeMaster, D. J., Nittrouer, C. A., Cutshall, N. H., Larsen, I. L., and Dion, E. P., 1980, Short lived radionuclide profiles and inventories from Amazon continental shelf sediments, Eos 61: 1004.Google Scholar
  33. Eager, E. W., 1964, Marine sediments: Effects of a tube-building polychaete, Science 143: 356–359.Google Scholar
  34. Fenchel, T., 1970, Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum, Limnol. Oceanogr. 15: 14–20.Google Scholar
  35. Fenchel, T., and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), Proc. Symp. Br. Ecol. Soc. 17: 285–299.Google Scholar
  36. Fenchel, T., Kofoed, L. H., and Lappalainen, A., 1975, Particle size-selection of two deposit feeders: The amphipod Corophium volutator and the prosobranch Hydrobia ulval, Mar. Biol. 30: 119–128.Google Scholar
  37. Filipek, L. H., and Owen, R. M., 1980, Early diagenesis of organic carbon and sulfur in outer shelf sediments from the Gulf of Mexico, Am. J. Sci. 280: 1097–1112.Google Scholar
  38. Fisher, J. B., Lick, W. J., McCall, P. L., and Robbins, J. A., 1980, Vertical mixing of lake sediments by tubificid oligochaetes, J. Geophys. Res. 85: 3997–4006.Google Scholar
  39. Foster-Smith, R. L., 1978, An analysis of water flow in tube-living animals, J. Exp. Mar. Biol. Ecol. 34: 73–95.Google Scholar
  40. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Soboxic diagenesis, Geochim. Cosmochim. Acta 43: 1075–1091.Google Scholar
  41. Goldberg, E. D., and Koide, M., 1962, Geochronological studies of deep sea sediments by the ionium/thorium method, Geochim. Cosmochim. Acta 26: 417–450.Google Scholar
  42. Goldhaber, M. B., and Kaplan, I. R., 1974, The sulfur cycle, in: The Sea ( E. D. Goldberg, ed.), Volume 5, pp. 569–655, John Wiley and Sons, New York.Google Scholar
  43. Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens, C. S., and Berner, R. A., 1977, Sulfate reduction diffusion and bioturbation in Long Island Sound sediments: Report of the FOAM group, Am. J. Sci. 277: 193–237.Google Scholar
  44. Grassle, J. F., and Grassle, J. P., 1974, Opportunistic life histories and genetic systems in marine benthic polychaetes, J. Mar. Res. 32: 253–284.Google Scholar
  45. Greenwood, D. J., 1968, Measurement of microbial metabolism in soil, in: The Ecology of Soil Bacteria ( T. R. G. Gray and D. Parkinson, eds.), pp. 138–157, University of Toronto Press, Toronto.Google Scholar
  46. Grill, E. V., and Richards, R. A., 1964, Nutrient regeneration from phytoplankton decomposing in sea water, J. Mar. Res. 22: 51–69.Google Scholar
  47. Grundmanis, V., and Murray, J. W., 1977, Nitrification and denitrification in marine sediments from Puget Sound, Limnol. Oceanogr. 22: 804–813.Google Scholar
  48. Guinasso, N. L., Jr., and Schink, D. R., 1975, Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res. 80: 3032–3043.Google Scholar
  49. Hammond, D. E., and Fuller, C., 1979, The use of radon-222 as a tracer in San Francisco Bay, in: San Francisco Bay: The Urbanized Estuary ( T. J. Conomos, ed.), pp. 213–230, American Association for the Advancement of Science, San Francisco, California.Google Scholar
  50. Hammond, D. E., Simpson, H. J., and Mathieu, G., 1975, Methane and radon-222 as tracers for mechanisms of exchange across the sediment—water interface in the Hudson River Estuary, in: Marine Chemistry in the Coastal Environment (T. M. Church, ed.), ACS Symposium Series 18, pp. 119–132, American Chemical Society, Washington, D.C.Google Scholar
  51. Hammond, L. S., 1981, An analysis of grain size modification in biogenic carbonate sediments by deposit-feeding holothurians and echinoids (Echinodermata), Limnol. Oceanogr. 26: 898–906.Google Scholar
  52. Hanor, J. S., and Marshall, N. T., 1971, Mixing of sediment by organisms, in: Trace Fossils (B. F. Perkins, ed.), Louisiana State University Miscellaneous Publication 71–1, pp. 127–136, Louisiana State University Press, Baton Rouge.Google Scholar
  53. Hargrave, B. T., 1970, The effect of a deposit-feeding amphipod on the metabolism of benthic microflora, Limnol. Oceanogr. 15: 21–30.Google Scholar
  54. Hargrave, B. T., 1972, Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content, Limnol. Oceanogr. 17: 583–596.Google Scholar
  55. Hargrave, B. T., 1976, The central role of invertebrate faeces in sediment decomposition, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), Proc. Symp. Br. Ecol. Soc. 17: 301–321.Google Scholar
  56. Hargrave, B. T., and Phillips, G. A., 1977, Oxygen uptake of microbial communities on solid surfaces, in: Aquatic Microbial Communities ( J. Cairns, Jr., ed.), pp. 545–587, Garland, New York.Google Scholar
  57. Harrison, P. G., and Mann, K. H., 1975, Detritus formation from eelgrass (Zostera marina L.): The relative effects of fragmentation, leaching, and decay, Limnol. Oceanogr. 20: 924–934.Google Scholar
  58. Hoffman, R. J., and Mangum, C. P., 1970, The function of coelomic cell hemoglobin in the polychaete Glycera dibranchiata, Comp. Biochem. Physiol. 36: 211–228.Google Scholar
  59. Hurd, D. C., 1973, Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific, Geochim. Cosmochim. Acta 37: 2257–2282.Google Scholar
  60. Hylleberg, J., 1975, Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms, Ophelia 14: 113–137.Google Scholar
  61. Jones, J. D., 1955, Observations on the respiratory physiology and on the haemoglobin of the polychaete genus Nephthys, with special reference to N. hombergii (Aud. et M. Edw.), J. Exp. Biol. 32: 110–125.Google Scholar
  62. Jorgensen, B. B., 1977a, The sulfur cycle of a coastal marine sediment (Linfjorden, Denmark), Limnol. Oceanogr. 22: 814–831.Google Scholar
  63. Jorgensen, B. B., 1977b, Bacterial sulfate reduction within reduced microniches of oxidized marine sediments, Mar. Biol. 41: 7–17.Google Scholar
  64. Jorgensen, B. B., 1978, A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation from mathematical models, Geomicrobial. J. 1: 29–48.Google Scholar
  65. Jumars, P. A., Nowell, A. R. M., and Self, R. F. L., 1981, A Markov model of flow—sediment—organism interactions: Model formulation and sensitivity analysis, in: Sedimentary Dynamics of Continental Shelves ( C. A. Nittrouer, ed.), pp. 155–172, Elsevier, Amsterdam.Google Scholar
  66. Kamatani, A., and Riley, J. P., 1979, Rate of dissolution of diatom silica walls in seawater, Mar. Biol. 55: 29–35.Google Scholar
  67. Khripounoff, A., and Sibuet, M., 1980, La nutrition d’echinodermes abyssaux. I. Alimentation des holothuries, Mar. Biol. 60: 17–26.Google Scholar
  68. Korosec, M. A., 1979, The effects of biological activity on transport of dissolved species across the sediment—water interface of San Francisco Bay, M.S. thesis, University of Southern California, Los Angeles.Google Scholar
  69. Krishnaswami, S., Benninger, L. K., Aller, R. C., and Van Damm, K. L., 1980, Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: Evidence from 7Be, 210Pb, and 239,240Pu, Earth Planet. Sci. Lett. 47: 307–318.Google Scholar
  70. Krüger, F., 1959, Zur Ernährungsphysiologie von Arenicola marina L., Zool. Anz. Suppl. 22: 115–120.Google Scholar
  71. Lerman, A., 1978, Chemical exchange across sediment—water interface, Annu. Rev. Earth Planet. Sci. 6: 281–303.Google Scholar
  72. Lerman, A., 1979, Geochemical Processes: Water and Sediment Environments, John Wiley and Sons, New York.Google Scholar
  73. Levinton, J. S., 1980, Particle feeding by deposit feeders: Models, data and a prospectus, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 423–439, University of South Carolina Press, Columbia.Google Scholar
  74. Li, Y.-H., and Gregory, S., 1974, Diffusion of ions in sea water and in deep sea sediments, Geochim. Cosmochim. Acta 38: 703–714.Google Scholar
  75. Livingston, H. D., and Bowen, V. T., 1979, Pu and 137Cs in coastal sediments, Earth Planet. Sci. Lett. 43: 29–45.Google Scholar
  76. Luedtke, N. A., and Bender, M. L., 1979, Tracer study of sediment—water interactions in estuaries, Estuarine Coastal Mar. Sci. 9: 643–651.Google Scholar
  77. McCaffrey, R. J., Myers, A. C., Davey, E., Morrison, G., Bender, M., Luedtke, N., Cullen, D., Froelich, P., and Klinkhammer, G., 1980, The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island, Limnol. Oceanogr. 25: 31–44.Google Scholar
  78. McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.Google Scholar
  79. Mangum, C. P., 1964, Activity patterns in metabolism and ecology of polychaetes, Comp. Biochem. Physiol. 11: 239–256.Google Scholar
  80. Mangum, C. P., and Burnett, L. E., 1975, The extraction of oxygen by estuarine invertebrates, in: Physiological Ecology of Estuarine Organisms ( F. J. Vernberg, ed.), pp. 147–163, University of South Carolina Press, Columbia.Google Scholar
  81. Mangum, C. P., Santos, S. L., and Rhodes, W. R., Jr., 1968, Distribution and feeding in the onuphid polychaete, Diopatra cuprea (Bosc), Marine Biol. 2: 33–40.Google Scholar
  82. Mare, M. F., 1942, A study of a marine benthic community with special reference to the microorganisms, J. Mar. Biol. Assoc. U. K. 25: 517–574.Google Scholar
  83. Martens, C. S., and Klump, J. V., 1980, Biogeochemical cycling in an organic-rich coastal marine basin. I. Methane sediment—water exchange processes, Geochim. Cosmochim. Acta 44: 471–490.Google Scholar
  84. Myers, A. C., 1977, Sediment processing in a marine subtidal sandy bottom community. I. Physical aspects, J. Mar. Res. 35: 609–632.Google Scholar
  85. Noshkin, V. E., and Bowen, V. T., 1973, Concentrations and distributions of long-lived fallout radionuclides in open ocean sediments, in: Radioactive Contamination of the Marine Environment, pp. 671–686, International Atomic Energy Agency, Vienna, Austria.Google Scholar
  86. Nittrouer, C. A., Sternberg, R. W., Carpenter, R., and Bennett, J. T., 1979, The use of Pb-210 geochronology as a sedimentological tool: Application to the Washington continental shelf, Mar. Geol. 31: 297–316.Google Scholar
  87. Nixon, S. W., Kelly, J. R., Fumas, B. N., Oviatt, C. A., and Hale, S. S., 1980, Phosphorus regeneration and the metabolism of coastal marine bottom communities, in: Marine Benthic Dynamics ( K. R. Tenore and B.C. Coull, eds.), pp. 219–242, University of South Carolina Press, Columbia.Google Scholar
  88. Okubo, A., 1971, Oceanic diffusion diagrams, Deep Sea Res. 18: 789–802.Google Scholar
  89. Olsen, C. R., Simpson, H. J., Ping, T.-H., Bopp, R. F., and Trier, R. M., 1981, Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments, J. Geophys. Res. 86: 11020–11028.Google Scholar
  90. Pearson, T. H., and Rosenberg, R., 1978, Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanogr. Mar. Biol. Annu. Rev. 16: 229–311.Google Scholar
  91. Peng, T. H., Broecker, W. S., and Berger, W. H., 1979, Rates of benthic mixing in deep-sea sediment as determined by radioactive tracers, Quat. Res. (N.Y.) 11: 141–149.Google Scholar
  92. Powell, E. N., 1977, Particle size selection and sediment reworking in a funnel feeder, Leptosynapta tenuis (Holothuroedea, Synaptidae), Int. Rev. Ges. Hydrobiol. 62: 385408.Google Scholar
  93. Pryor, W. A., 1975, Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments, Geol. Soc. Am. Bull. 86: 1244–1254.Google Scholar
  94. Redfield, A. C., 1934, On the proportion of organic derivatives in sea water and their relation to the composition of plankton, in: James Johnstone Memorial Volume, pp. 176–192, University Press, Liverpool.Google Scholar
  95. Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.Google Scholar
  96. Rhoads, D. C., and Stanley, D. J., 1965, Biogenic graded bedding, J. Sediment. Petrol. 35: 956–963.Google Scholar
  97. Rhoads, D. C., Aller, R. C., and Goldhaber, M. B., 1977, The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine seafloor, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 113–138, University of South Carolina Press, Columbia.Google Scholar
  98. Rhoads, D. C., Yingst, J. Y., and Ullman, W. J., 1978, Seafloor stability in central Long Island Sound. Part I. Temporal changes in erodibility of fine-grained sediment, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 221–244, Academic Press, New York.Google Scholar
  99. Richards, F. A., 1965, Anoxic basins and fjords, in: Chemical Oceanography ( J. P. Riley and G. Skirrow, eds.), Volume 1, pp. 611–645, Academic Press, New York.Google Scholar
  100. Riedl, R. J., Huang, N., and Machan, R., 1972,-The subtidal pump: A mechanism of interstitial water exchange by wave action, Mar. Biol. 13: 210–221.Google Scholar
  101. Rijken, M., 1979, Food and food uptake in Arenicola marina, Neth. J. Sea Res. 13: 406–421.Google Scholar
  102. Santschi, P. H., Li, Y.-H., Bell, J. J., Trier, R. M., and Kawtaluk, K., 1980, Pu in coastal marine environments, Earth Planet. Sci. Lett. 51: 248–265.Google Scholar
  103. Schäfer, W., 1972, Ecology and Paleoecology of Marine Environments (G. Y. Craig, ed.; I. Oertel, translator), University of Chicago Press, Chicago.Google Scholar
  104. Schink, D. R., and Guinasso, N. L., Jr., 1977, Effects of bioturbation on sediment—seawater interaction, Mar. Geol. 23: 133–154.Google Scholar
  105. Schink, D. R., and Guinasso, N. L., Jr., 1978, Redistribution of dissolved and adsorbed materials in abyssal marine sediments undergoing biological stirring, Am. J. Sci. 278: 687–702.Google Scholar
  106. Schink, D. R., Guinasso, N. L., Jr., and Fanning, K. A., 1975, Processes affecting the concentration of silica at the sediment—water interface of the Atlantic Ocean, J. Geophys. Res. 80: 3013–3031.Google Scholar
  107. Self, R. F. L., and Jumars, P. A., 1978, New resource axes for deposit feeders? J. Mar. Res. 36: 627–641.Google Scholar
  108. Sepkoski, J. J., Jr., and Bambach, R. K., 1979, The temporal restriction of flat-pebble conglomerates: An example of co-evolution of organisms and sediments, Geol. Soc. Am. Abst. 11: 256.Google Scholar
  109. Sholkovitz, E., 1973, Interstitial water chemistry of the Santa Barbara Basin sediments, Geochim. Cosmochim. Acta 37: 2043–2073.Google Scholar
  110. Smethie, W. M., Jr., Nittrouer, C. A., and Self, R. F. L., 1981, The use of radon-222 as a tracer of sediment irrigation and mixing on the Washington continental shelf, in: Sedimentary Dynamics of Continental Shelves ( C. A. Nittrouer, ed.), pp. 173–200, Elsevier, Amsterdam.Google Scholar
  111. Smith, K. L., Jr., 1978, Benthic community respiration in the N.W. Atlantic Ocean: In situ measurements from 40 to 5200 m., Mar. Biol. 47: 337–347.Google Scholar
  112. Sorensen, J., 1978, Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment, Appl. Environ. Microbiol. 35: 301–305.Google Scholar
  113. Stumm, W., and Morgan, J. J., 1970, Aquatic Chemistry, John Wiley and Sons, New York.Google Scholar
  114. Thayer, C. W., 1979, Biological bulldozers and the evolution of marine benthic communities, Science 203: 458–461.Google Scholar
  115. Thistle, D., 1979, Harpacticoid copepods and biogenic structures: Implications for deep-sea diversity maintenance, in: Ecological Processes in Coastal and Marine Systems ( R. J. Livingston, ed.), pp. 217–231, Plenum Press, New York.Google Scholar
  116. Thompson, R. K., and Pritchard, A. W., 1969, Respiratory adaptations of two burrowing crustaceans, Callianassa californiensis and Upogebia pugettensis (Decapoda, Thalassinidea), Biol. Bull. 136: 274–287.Google Scholar
  117. Thorstenson, D. C., 1970, Equilibrium distribution of small organic molecules in natural waters, Geochim. Cosmochim. Acta 34: 745–770.Google Scholar
  118. Turekian, K. K., Cochran, J. K., and DeMaster, D. J., 1978, Bioturbation in deep-sea deposits: Rates and consequences, Oceanus 21: 34–41.Google Scholar
  119. Turekian, K. K., Cochran, J. K., Benninger, L. K., and Aller, R. C., 1980, The sources and sinks of nuclides in Long Island Sound, Adv. Geophys. 22: 129–164.Google Scholar
  120. Ullman, W. J., and Aller, R. C., 1982, Diffusion coefficients in nearshore marine sediments, Limnol. Oceanogr. 27: 552–556.Google Scholar
  121. Vanderborght, J. P., and Billen, G., 1975, Vertical distribution of nitrate in interstitial water of marine sediments with nitrification and denitrification, Limnol. Oceanogr. 20: 953–961.Google Scholar
  122. Vanderborght, J. P., Wollast, R., and Billen, G., 1977, Kinetic models of diagenesis in disturbed sediments. I. Mass transfer properties and silica diagenesis, Limnol. Oceanogr. 22: 787–793.Google Scholar
  123. van Straaten, L. M. J. U., 1952, Biogene textures and the formation of shell beds in the Dutch Wadden Sea. I—II, Koninkl. Nederl. Akad. Wet. Proc. Ser. B 55: 500–516.Google Scholar
  124. Westrich, J., 1983, Ph.D. dissertation, Yale University, New Haven, Connecticut (in preparation).Google Scholar
  125. Whitlatch, R. B., 1974, Food-resource partitioning in the deposit-feeding polychaete Pectinaria gouldii, Biol. Bull. 147: 227–235.Google Scholar
  126. Yingst, J. Y., and Rhoads, D. C., 1980, The role of bioturbation in the enhancement of microbial turnover rates in marine sediments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 407–422, University of South Carolina Press, Columbia.Google Scholar
  127. Zeitzschel, B., 1980, Sediment—water interactions in nutrient dynamics, in: Marine Benthic Dynamics ( K. R. Tenore and B.C. Coull, eds.), pp. 195–218, University of South Carolina Press, Columbia.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Robert C. Aller
    • 1
  1. 1.Department of the Geophysical SciencesUniversity of ChicagoChicagoUSA

Personalised recommendations