Hormones and the Lung

  • B. Corrin
Part of the Ettore Majorana International Science Series book series (EMISS, volume 14)

Liggins reported in 1969 that premature lambs survived better if they had been treated in utero with glucocorticoids and suggested that glucocorticoids promoted foetal lung maturation and hence surfactant production. Subsequent studies have shown that glucocorticoid treatment of the foetus accelerates structural development of the lungs. Glucocorticoid receptors have been identified in higher concentration in the lung than any other foetal tissue. Using isolated cells, glucocorticoid receptors have been identified in the nuclei of lung fibroblasts and type II cells, but the concentration is no higher than in whole lung In keeping with this, the glucocorticoid-enhanced structural maturation of the lung is generalised, suggesting that all cell types are affected.

Keywords

Glucocorticoid Receptor Amniotic Membrane Pulmonary Epithelial Cell Basic Amine Pulmonary Endothelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard, P. L. and Ballard, R. A. (1979). Corticosteroids and respiratory distress syndrome. Pediatrics, 63, 163.Google Scholar
  2. Bensch, K. G., Gordon, G. B. and Miller, J. R. (1965). Studies on the bronchial counterpart of the Kultschitsky (Argentaffin) cell and innervation of bronchial glands. Journal Ultrastructural Research, 12, 668.CrossRefGoogle Scholar
  3. Bensch, K. G., Corrin, B., Pariente, R. and Spencer, H. (1968). Oat-cell carcinoma of the lung. Cancer, 22, 1163.CrossRefGoogle Scholar
  4. Cole, G. A., Polak, J. M., Wharton, J., Marangos, P. and Pearse, A. G. E. (1980). Neuron specific enolase as a useful histochemical marker for the neuroendocrine system of the lung. Journal of Pathology, 132, 351.Google Scholar
  5. Ferreira, S. H., Greene, L. J., Salgado, M.C.O. and Krieger, E.M. (1980). The fate of circulating biologically active peptides in the lungs. Metabolic activities of the lung (Ciba Foundation Symposium 78), 129.Google Scholar
  6. Feyrter, F. (1953). Ueber die Peripheren Endokrinen (Parakrinen) Druesen des Menschen. W. Maudrich, Wien-Dusseldorf.Google Scholar
  7. Gaddum, J. H., Hebb, C. O., Silver, A. and Swann, A. A. B. (1953). 5-Hydroxytryptamine. Pharmacological action and destruction in perfused lungs. Quarterly Journal of Experimental Physiology aand Cognate Medical Sciences, 38, 255.Google Scholar
  8. Gryglewski, R. J., Korbut, R. and Ocetkiewicz, A. (1978). Generation of prostacyclin by lungs in vivo and its release into the arterial circulation. Nature, 273, 765.ADSCrossRefGoogle Scholar
  9. Hage, E. (1972). Endocrine cells in bronchial mucosa of human foetuses. Acta pathologica Scandanavica, 80, 225.Google Scholar
  10. Junod, A. F. (1972). Accumulation of <sup>14</sup>C-imipramine in isolated perfused rat lungs. J. Pharmacol. Exp. Ther., 183, 182.Google Scholar
  11. Lauwryns, J. M. and Cokelaere, M. (1973). Hypoxia-sensitive neuroepithelial bodies: intrapulmonary secretory neuroreceptors modulated by the CNS. Z. Zellforsch, 145, 521.CrossRefGoogle Scholar
  12. Liggins, G. C. (1969). Premature delivery of foetal lambs infused with glucocorticoids. Journal of Endocrinology, 45, 515.CrossRefGoogle Scholar
  13. Moncada, S., Korbut, R., Bunting, S and Vane, J. R. (1978). Prostacyclin is a circulating hormone. Nature, 273, 767.ADSCrossRefGoogle Scholar
  14. Moosavi, H., Smith, P. and Heath, D. (1973). The Feyrter cell in hypoxia. Thorax, 28, 729.CrossRefGoogle Scholar
  15. Nicholas, T. E., Strum, J. M., Angelo, L. S. and Junod, A. F. (1974). Site and mechanism of uptake of <sup>3</sup>HL-norepinephrine by isolated perfused rat lungs. Circulation Research, 35, 670.CrossRefGoogle Scholar
  16. Pearse, A.G.E. (1969). The cytochemistry and ultrastructure of polypeptide hormone producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. Journal of Histochemistry and Cytochemistry, 17, 303.CrossRefGoogle Scholar
  17. Ryan, U. S., Ryan, J. W., Whitaker, C. and Chiu, A. (1976). Localisation of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue and Cell, 8, 125.CrossRefGoogle Scholar
  18. Starling, E. H. and Verney, E. B. (1925). The secretion of urine as studied in the isolated kidney. Proceedings of the Royal Society of London. B Biological Sciences, 97, 321.CrossRefGoogle Scholar
  19. Tateishi, R. (1973). Distribution of argyrophil cells in adult human lung. Archives of Pathology, 96, 198.Google Scholar
  20. Taylor, W. (1977). Pulmonary argyrophil cells at high altitude. Journal of Pathology, 122, 137.CrossRefGoogle Scholar
  21. Wharton, J., Polak, J. M., Bloom, S. R., Ghatei, M. A., Solcia, E., Brown, M. R. & Pearse, A.G.E. (1978). Bombesin-like immunoreactivity in the lung. Nature, 273, 769.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • B. Corrin
    • 1
  1. 1.Cardiothoracic InstituteBrompton HospitalLondonUK

Personalised recommendations