Structural Evidence for Solutions from EXAFS Measurements

  • Donald R. Sandstrom
  • B. Ray Stults
  • R. B. Greegor

Abstract

Physical evidence for the structure of solutions has been obtained by x-ray scattering,1,2,3,4 neutron scattering,5,6,7,8 Raman scattering,9,10 transport measurements,11 and NMR12 techniques. In addition, extended x-ray absorption fine structure spectroscopy (EXAFS spectroscopy) has been applied to this problem. It is the sensitivity to local structure that makes EXAFS especially suitable for systems like this, for which no long range order is expected. Also, the element specificity of EXAFS means that the radial distribution functions deduced from EXAFS analysis contain only the relationship between atoms of the x-ray absorbing element and its neighbors. In contrast, neutron and x-ray scattering methods result in an average correlation function for the sample as a whole, unless special techniques such as isotopic substitution in the scattering of neutrons6 or anomalous scattering of x-rays13 are employed to distinguish the correlations between specific pairs of elements.

Keywords

EXAFS Spectrum Linear Absorption Coefficient Rhodium Catalyst EXAFS Data EXAFS Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ohtaki, T. Yamaguchi, and M. Maeda, Bull. Chem. Soc. Japan. 49, 701 (1976).CrossRefGoogle Scholar
  2. 2.
    W. Bol, G. J. A. Gerrits, and C. L. van Panthaleon, J. Appl. Crystallogr. 3, 486 (1970).CrossRefGoogle Scholar
  3. 3.
    R. Caminiti, G. Licheri, G. Piccaluga, and G. Pinna, J. Chem. Phys. 65, 3134 (1976).CrossRefGoogle Scholar
  4. 4.
    R. Caminiti, G. Licheri, G. Piccaluga, and G. Pinna, Disc. Faraday Soc. 64, 62 (1977).CrossRefGoogle Scholar
  5. 5.
    R. H. Howe, W. S. Howells, and J. E. Enderby, J. Phys. C7, L111 (1974).Google Scholar
  6. 6.
    A. K. Soper, G. W. Neilson, J. E. Enderby, and R. A. Howe, J. Phys. C 10, 1793 (1977).CrossRefGoogle Scholar
  7. 7.
    G. W. Neilson and J. E. Enderby, J. Phys. C11, L625 (1978).Google Scholar
  8. 8.
    G. Cubiotti, F. Sachetti, and M. C. Spinelli, Solid State Commun. 27, 349 (1978).CrossRefGoogle Scholar
  9. 9.
    M. P. Fontana, G. Maisano, P. Migliardo, and F. Wanderlingh, Solid State Commun. 23, 489 (1977).CrossRefGoogle Scholar
  10. 10.
    M. P. Fontana, G. Maisano, P. Migliardo, and F. Wanderlingh, J. Chem. Phys. 69, 676 (1978).CrossRefGoogle Scholar
  11. 11.
    G. Maisano, P. Migliardo, and F. Wanderlingh, J. Chem. Phys. 68, 5594 (1978).CrossRefGoogle Scholar
  12. 12.
    J. W. Neely and Robert E. Connick, J. Am. Chem. Soc. 94, 3419 (1972).CrossRefGoogle Scholar
  13. 13.
    H. Winick and A. Bienenstock, Ann. Rev. Nucl. Part. Sci. 28, 33 (1978).CrossRefGoogle Scholar
  14. 14.
    P. Eisenberger, B. M. Kincaid, Chem. Phys. Lett. 36, 134 (1975).CrossRefGoogle Scholar
  15. 15.
    D. R. Sandstrom, H. W. Dodgen, and F. W. Lytle, J. Chem. Phys. 67, 473 (1977).CrossRefGoogle Scholar
  16. 16.
    A. Fontaine, P. Lagarde, D. Raoux, M. P. Fontana, G. Maisano, P. Migliardo, and F. Wanderlingh, Phys. Rev. Lett. 41, 504 (1978).CrossRefGoogle Scholar
  17. 17.
    T. I. Morrison, A. H. Reis, G. S. Knapp, F. Y. Fradin, H. Chen, and T. E. Klippert, J. Am. Chem. Soc. 100, 3262 (1978).CrossRefGoogle Scholar
  18. 18.
    D. R. Sandstrom, J. Chem. Phys. 71, 2381 (1979).CrossRefGoogle Scholar
  19. 19.
    H. W. Huang, S. H. Hunter, W. K. Warburton, and S. C. Moss, Science 204, 191 (1979).CrossRefGoogle Scholar
  20. 20.
    P. Lagarde, A. Fontaine, D. Raoux, A. Sadoc, and P. Migliardo, Private Communication.Google Scholar
  21. 21.
    D. R. Sandstrom and F. W. Lytle, Ann. Rev. Phys. Chem. 30, 215 (1979).CrossRefGoogle Scholar
  22. 22.
    B. R. Stults, Presented at Amer. Chem. Soc. — Chem. Soc. Japan Chemical Congress, Honolulu, Hawaii, April 1979.Google Scholar
  23. 23.
    G. S. Knapp, H. Chen, and T. E. Klippert, Rev. Sci. Instrum. 49, 1658 (1978).CrossRefGoogle Scholar
  24. 24.
    S. Doniach, I. Lindau, W. E. Spicer, and H. Winick, J. Vac. Sci. Tech. 12, 1123 (1975).CrossRefGoogle Scholar
  25. 25.
    J. Jaklevic, J. A. Kirby, M. P. Klein, A. S. Robertson, G. S. Brown, and P. Eisenberger, Solid State Comm. 23, 679 (1977).CrossRefGoogle Scholar
  26. 26.
    S. C. Moss, H. Metzger, M. Eisner, H. W. Huang, and S. C. Hunter, Rev. Sci. Instru. 49, 1559 (1978).CrossRefGoogle Scholar
  27. 27.
    E. A. Stern and S. H. Heald, Rev. Sci. Instru. 50, 1579 (1979).CrossRefGoogle Scholar
  28. 28.
    P. Eisenberger and B. M. Kincaid, Science 200, 1441 (1978).CrossRefGoogle Scholar
  29. 29.
    E. A. Stern, Contemp. Phys. 19, 289 (1978).CrossRefGoogle Scholar
  30. 30.
    F. Bigoli, A. Braibanti, A. Tiripicchio, and M. Tiripicchio-Camellini, Acta Crystallogr. Sect. B 27, 1427 (1971).CrossRefGoogle Scholar
  31. 31.
    B. K. Teo and P. A. Lee, J. Am. Chem. Soc. 101, 2815 (1979).CrossRefGoogle Scholar
  32. 32.
    D. R. Sandstrom and J. M. Fine, SSRL Rep. 78/09, Stanford Synchrotron Radiation Lab., Palo Alto, Calif. (1978), pp. 77–78.Google Scholar
  33. 33.
    G. Martens, P. Rabe, N. Schwenterner, and A. Werner, Phys. Rev. B 17, 1481 (1978).CrossRefGoogle Scholar
  34. 34.
    For example see, B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. K. Bachman, and D. J. Weinkauff, J. Amer. Chem. Soc. 99, 5946 (1977).CrossRefGoogle Scholar
  35. 35.
    M. D. Fryzuk and B. Bosnich, J. Amer. Chem. Soc. 99, 6262 (1977).CrossRefGoogle Scholar
  36. 36.
    Ligand abbreviations: P-P is Dipamp = (R,R)-1,2-ethanediylbis- [(O-methoxyphenyl)phenylphosphine], Diop = (R,R)-isopropylidene-2,3-dihydroxy1,4-bis-(diphenylphosphino)butane, Diphos = bis(1,2-diphenylphosphino)ethane, Cis-ethylene = cis-bis-(Diphenylphosphino)ethylene; P is Camp = (R)-O-anisylmethyl-cyclohexylphosphine; L = 1,5-cyclooctadiene or bicyclo-[2.2.1]-heptadiene.Google Scholar
  37. 37.
    J. Halpern, Trans. Amer. Cryst. Assoc., March 20, 1978, pp. 59.Google Scholar
  38. 38.
    J. M. Brown and P. A. Chaloner, Tetrahedron Lett., 1988 (1978) and J. M. Brown, private communication.Google Scholar
  39. 39.
    J. Halpern, University of Chicago, private communication.Google Scholar
  40. 40.
    J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Am. Chem. Soc. 99, 5217 (1977).CrossRefGoogle Scholar
  41. 40a.
    J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Am. Chem. Soc. 100, 2375 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Donald R. Sandstrom
    • 1
  • B. Ray Stults
    • 2
  • R. B. Greegor
    • 3
  1. 1.Department of PhysicsWashington State UniversityPullmanUSA
  2. 2.Corporate Research and Development StaffMonsanto CompanySt. LouisUSA
  3. 3.Boeing CompanySeattleUSA

Personalised recommendations