Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy: Techniques and Applications

  • Boon-Keng Teo

Abstract

Extended X-ray absorption fine structure (EXAFS) refers to the oscillatory variation of the X-ray absorption as a function of photon energy beyond an absorption edge. The absorption, normally expressed in terms of absorption coefficient (µ), can be determined from a measurement of the attenuation of X-rays upon their passage through a material. When the X-ray photon energy (E) is tuned to the binding energy of some core level of an atom in the material, an abrupt increase in the absorption coefficient, known as the absorption edge, occurs. For isolated atoms, the absorption coefficient decreases monotonically as a function of energy beyond the edge. For atoms either in a molecule or embedded in a condensed phase, the variation of absorption coefficient at energies above the absorption edge displays a complex fine structure called EXAFS.

Keywords

Multiple Scattering Neighboring Atom Direct Backscattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. de L. Kronig, Z. Physik., 70, 317 (1931)CrossRefGoogle Scholar
  2. 1.(a)
    R. de L. Kronig, Z. Physik., 75, 191 (1932)CrossRefGoogle Scholar
  3. 2.
    E. A. Stern, Phys. Rev. B, 10, 3027 (1974);CrossRefGoogle Scholar
  4. 2.(a)
    E. A. Stern, D. E. Sayers, and F. W. Lytle, Phys. Rev. B, 11, 4836 (1975), and references cited therein.CrossRefGoogle Scholar
  5. 3.(a)
    B. M. Kincaid and P. Eisenberger, Phys. Rev. Lett., 34, 1361 (1975);CrossRefGoogle Scholar
  6. 3.(b)
    H. Winick and A. Bienenstock, Ann. Rev. Nucl. Part. Sci., 28, 33 (1978);CrossRefGoogle Scholar
  7. 3.(c)
    I. Lindau and H. Winick, J. Vac. Sci. Tecnol., 15, 977 (1978);CrossRefGoogle Scholar
  8. 3.(d)
    R. E. Watson and M. L. Perlman, Science, 199, 1295 (1978);CrossRefGoogle Scholar
  9. 3.(e)
    B. W. Batterman and N. W. Ashcroft, Science, 206, 157 (1979).CrossRefGoogle Scholar
  10. 4.
    The physics and biological aspects of EXAFS have been reviewed elsewhere by others, see, e.g., (a) E. A. Stern, Contemp. Phys., 19, 289 (1978);CrossRefGoogle Scholar
  11. 4.(b)
    P. Eisenberger and B. M. Kincaid, Science, 200, 1441 (1978);CrossRefGoogle Scholar
  12. 4.(c)
    R. G. Shulman, P. Eisenberger, and B. M. Kincaid, Ann. Rev. Biophys. Bioeng., 7, 559 (1978);CrossRefGoogle Scholar
  13. 4.(d)
    D. R. Sandstrom and F. W. Lytle, Ann. Rev. Phys. Chem., 30, 215 (1979);CrossRefGoogle Scholar
  14. 4.(e)
    S. P. Cramer and K. O. Hodgson, Prog. Inorg. Chem., 25, 1 (1979);CrossRefGoogle Scholar
  15. 4.(f)
    T. M. Hayes, J. Non-Cryst. Solids, 31, 57 (1978);CrossRefGoogle Scholar
  16. 4.(g)
    J. Wong in “Metallic Glasses”, H. J. Guntherodt, Ed., Springer-Verlag, Berlin (1980);Google Scholar
  17. 4.(h)
    “Synchrotron Radiation Research”, ed. H. Winick and S. Doniach, Plenum, N.Y. (1980);CrossRefGoogle Scholar
  18. 4.(i)
    P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys., in press.Google Scholar
  19. 5.
    U. C. Srivastava and H. L. Nigam, Coord. Chem. Rev., 9, 275 (1972–73).CrossRefGoogle Scholar
  20. 6.(a)
    R. G. Shulman, Y. Yafet, P. Eisenberger, & W. E. Blumberg, Proc. Natl. Acad. Sci. U.S.A, 73, 1384 (1976);CrossRefGoogle Scholar
  21. 6.(b)
    F. W. Lytle, P. S. P. Wei, R. B. Greegor, G. H. Via, and J. H. Sinfelt, J. Chem. Phys., 70, 4849 (1979);CrossRefGoogle Scholar
  22. 6.(c)
    L. Powers, W. E. Blumberg, B. Chance, C. H. Barlow, J. S. Leigh, Jr., J. Smith, T. Yonetani, S. Vik, and J. Peisach, Biochim. Biophy. Acta, 546, 520 (1979).CrossRefGoogle Scholar
  23. 7.(a)
    J. Jaklevic, J. A. Kirby, M. P. Klein, A. S. Robertson, G. S. Brown, and P. Eisenberger, Solid State Comm., 23, 679 (1977);CrossRefGoogle Scholar
  24. 7.(b)
    F. S. Goulding, J. M. Jaklevic, and A. C. Thompson, SSRL Report No. 78/04, May 1978;Google Scholar
  25. 7.(c)
    E. A. Stern and S. M. Heald, Rev. Sci. Instrum., 50, 1579 (1979);CrossRefGoogle Scholar
  26. 7.(d)
    P. H. Citrin, P. Eisenberger, and R. Hewitt, Phys. Rev. Lett., 41, 309 (1978);CrossRefGoogle Scholar
  27. 7.(e)
    J. Stohr, D. Denley, and P. Perfetti, Phys. Rev. B, 18, 4132 (1978);CrossRefGoogle Scholar
  28. 7.(f)
    M. Isaacson, J. Chem. Phys., 56, 1818 (1972);Google Scholar
  29. 7.(g)
    J. I. Ritsko, S. E. Schnatterly and P. G. Gibbons, Phys. Rev. Lett., 32, 671 (1974);CrossRefGoogle Scholar
  30. 7.(h)
    R. A. Bonham in “Momentum Wave Functions-1976”, American Institute of Physics, New York (1977);Google Scholar
  31. 7.(i)
    B. M. Kincaid, A. E. Meixner, and P. M. Platzman, Phys. Rev. Lett., 40, 1296 (1978);CrossRefGoogle Scholar
  32. 7.(j)
    D. C. Joy and D. M. Maher, Science 206, 162 (1979).CrossRefGoogle Scholar
  33. 8.(a)
    C. A. Ashley and S. Doniach, Phys. Rev. B, 11, 1279 (1975).CrossRefGoogle Scholar
  34. 8.(b)
    P. A. Lee and G. Beni, Phys. Rev. B, 15, 2862 (1977);CrossRefGoogle Scholar
  35. 8.(c)
    P. A. Lee and J. B. Pendry, ibid. 11, 2795 (1975).CrossRefGoogle Scholar
  36. 9.
    Though simply defined as x = (µ - µ o)/µ o (where μ and µ o are the observed and ‘free atom’ absorption coefficients, respectively), the determination of x (generally termed as ‘background substration’) is by no means straightforward since µ o is generally not known. A general procedure is to approximate µ o by a smooth curve (some polynomial or spline) fitted to μ. In transmission experiments, generally drops off monotonically due primarily to the energy dependence of the ionization chamber efficiency and the absorption due to other atoms. In fluorescence experiments, on the other hand, the baseline rises as a function of energy owing to increasing sample penetration, increased Compton scattering, reduced absorption of the scattering, and other effects.Google Scholar
  37. 10.
    It should be cautioned that the Debye-Waller factor as determined by EXAFS is different from that implied by conventional crystallography in that it refers to the root-mean-square relative displacement along the bond direction and not the absolute root-mean-square displacement of individual atoms. For the first shell, the motions are significantly correlated whereas for higher shells the correlation is greatly reduced.Google Scholar
  38. 11.
    S. J. Cyrin, Molecular Vibrations and Mean Square Amplitudes, Elsevier, Amsterdam, 1968, p. 77.Google Scholar
  39. 12.
    G. Beni and P. M. Platzman, Phys. Rev. B, 14, 1514 (1976).CrossRefGoogle Scholar
  40. 13.
    R. B. Greegor and F. W. Lytle, Phys. Rev. B, 20, 4902 (1979).CrossRefGoogle Scholar
  41. 14.
    E. Sevillano, H. Meuth, and J. J. Rehr, Phys. Rev. B, 20, 4908 (1979).CrossRefGoogle Scholar
  42. 15.
    P. Eisenberger and G. S. Brown, Solid State Commun., 29, 481 (1979) .CrossRefGoogle Scholar
  43. 16.
    T. M. Hayes and J. B. Boyce, Chapter 5 of this book.Google Scholar
  44. 17.
    T. M. Hayes, J. B. Boyce, and J. L. Beeby, J. Phys. C, 11, 2931 (1978).CrossRefGoogle Scholar
  45. 18.
    E. D. Crozier, Chapter 6 of this book.Google Scholar
  46. 19.
    E. D. Crozier and A. J. Seary, Can. J. Phys., 58, 1388 (1980).Google Scholar
  47. 20.
    J. J. Rehr, E. A. Stern, R. L. Martin, and E. R. Davidson, Phys. Rev. B, 17, 560 (1978).CrossRefGoogle Scholar
  48. 21.(a)
    E. A. Stern, B. Bunker, and S. M. Heald, Chapter 4 of this bookGoogle Scholar
  49. 21.(b)
    E. A. Stern, B. A. Bunker, and S. M. Heald, Phys. Rev. B, 21, 5521 (1980).CrossRefGoogle Scholar
  50. 22.
    P. Eisenberger and B. Lengeler, to be published in Phys. Rev. B (1980).Google Scholar
  51. 23.
    B. K. Teo, J. Am. Chem. Soc., submitted for publication.Google Scholar
  52. 24.
    C. J. Powell, Surface Sci., 44, 29 (1974) .CrossRefGoogle Scholar
  53. 25.
    D. R. Penn, Phys. Rev. B, 13, 5248 (1976).CrossRefGoogle Scholar
  54. 26.
    M. P. Seah and W. A. Dench, Surface Inter. Anal., 1, 2 (1979).CrossRefGoogle Scholar
  55. 27.
    Strictly speaking, the single-electron single-scattering theory of EXAFS already includes one particular multiple scattering correction: viz., the backscattering process involving the central atom which gives rise to the 2kr phase factor. In this paper, “multiple scattering” refers to processes involving atoms other than the central atom.Google Scholar
  56. 28.
    B. K. Teo and P. A. Lee, J. Am. Chem. Soc., 101, 2815 (1979).CrossRefGoogle Scholar
  57. 29.(a)
    P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Phys. Rev. Lett., 36, 1346 (1976);CrossRefGoogle Scholar
  58. 29.(b)
    B. K. Teo, P. A. Lee, A. L. Simons, P. Eisenberger, and B. M. Kincaid, J. Am. Chem. Soc., 99, 3854 (1977);CrossRefGoogle Scholar
  59. 29.(c)
    P. A. Lee, B. K. Teo, and A. L. Simons, J. Am. Chem. Soc., 99, 3856 (1977).CrossRefGoogle Scholar
  60. 30.
    S. P. Cramer, T. K. Eccles, F. Kutzler, K. O. Hodgson, and S. Doniach, J. Am. Chem. Soc., 98, 8059 (1976).CrossRefGoogle Scholar
  61. 31.
    R. G. Shulman, P. Eisenberger, W. E. Blumberg, N. A. Stombaugh, .Proc Nat. Acad. Sci. U.S.A., 72, 4002 (1975).CrossRefGoogle Scholar
  62. 32.
    G. Martens, P. Rabe, N. Schwentner, and A. Werner, Phys. Rev. Lett., 39, 1411 (1977).CrossRefGoogle Scholar
  63. 33.
    P. A. Lee, Chapter 2 of this book.Google Scholar
  64. 34.
    A. Bienenstock, Chapter 14 of this book.Google Scholar
  65. 35.
    B. W. Batterman, Chapter 15 of this book.Google Scholar
  66. 36.
    J. B. Hastings, Chapter 16 of this book.Google Scholar
  67. 37.
    P. J. Mallozzi, R. E. Schwerzel, H. M. Epstein, and B. E. Campbell, Science, 206, 353 (1979).CrossRefGoogle Scholar
  68. 38.
    G. S. Knapp, H. Chen, T. E. Klippert, Rev. Sci. Instrum., 49, 1658 (1978).CrossRefGoogle Scholar
  69. 39.
    For more detailed discussions on S/N of various EXAFS techniques, see Ref. 41.Google Scholar
  70. 40.
    J. B. Hastings, P. Eisenberger, B. Lengeler, and M. L. Perlman, Phys. Rev. Lett., 43, 1807 (1979).CrossRefGoogle Scholar
  71. 41.
    M. Marcus, L. S. Powers, A. R. Storm, B. M. Kincaid, and B. Chance, Rev. Sci. Instrum., 51, 1023 (1980).CrossRefGoogle Scholar
  72. 42.
    See Chapters 17–21 of this book.Google Scholar
  73. 43.
    R. D. Leapman and V. E. Cosslet, J. Phys. D, 9, 25 (1976) .CrossRefGoogle Scholar
  74. 44.
    P. E. Batson and A. J. Craven, Phys. Rev. Lett., 42, 893 (1979).CrossRefGoogle Scholar
  75. 45.
    For an excellent review, see R. H. Holm, Acc. Chem. Res., 10, 427 (1977).CrossRefGoogle Scholar
  76. 46.
    R. G. Shulman, P. Eisenberger, B. K. Teo, B. M. Kincaid, and G. S. Brown, J. Mol. Biol., 124, 305 (1978), and references cited therein.CrossRefGoogle Scholar
  77. 47.
    B. K. Teo, R. G. Shulman, G. S. Brown, and A. E. Meixner, J. Am. Chem. Soc., 101, 5624 (1979) .CrossRefGoogle Scholar
  78. 48.
    K. D. Watenbaugh, L. C. Sieker, J. R. Herriot, and L. H. Jensen, Acta Crystallogr. B, 29, 943 (1973).CrossRefGoogle Scholar
  79. 49.(a)
    B. Bunker and E. A. Stern, Biophys. J., 19, 253 (1977);CrossRefGoogle Scholar
  80. 49.(b)
    D. E. Sayers, E. A. Stern, and J. R. Herriott, J. Chem. Phys., 64, 427 (1976).CrossRefGoogle Scholar
  81. 50.(a)
    P. Eisenberger, R. G. Shulman, G. S. Brown, and S. Ogawa, Proc. Natl. Acad. Sci., U.S.A., 73, 491 (1976); (b) P. Eisenberger, R. G. Shulman, B. M. Kincaid, G. S. Brown, and S. Ogawa, Nature (London), 274, 30 (1978).CrossRefGoogle Scholar
  82. 50.(b)
    P. Eisenberger, R. G. Shulman, B. M. Kincaid, G. S. Brown, and S. Ogawa, Nature (London), 274, 30 (1978).CrossRefGoogle Scholar
  83. 51.(a)
    J. L. Hoard, Science, 174, 1295 (1971);CrossRefGoogle Scholar
  84. 51.(b)
    M. F. Perutz, Nature (London), 228, 726 (1970).CrossRefGoogle Scholar
  85. 52.
    G. S. Brown, G. Navon, and R. G. Shulman, . Proc Natl. Acad. Sci., U.S.A., 74, 1794 (1977).CrossRefGoogle Scholar
  86. 53.
    S. M. Heald, E. A. Stern, B. Bunker, E. M. Holt, and S. L. Holt, J. Am. Chem. Soc., 101, 67 (1979).CrossRefGoogle Scholar
  87. 54.
    J. M. Brown, L. Powers, B. Kincaid, J. A. Larrabee, and T. G. Spiro, J. Am. Chem. Soc. 102, 4210 (1980) .CrossRefGoogle Scholar
  88. 55.(a)
    T. E. Wolff, J. M. Berg, C. Warrick, K. O. Hodgson, R. H. Holm, and R. B. Frankel, J. Am. Chem. Soc., 100, 4630 (1978);CrossRefGoogle Scholar
  89. 55.(b)
    S. P. Cramer, K. O. Hodgson, W. O. Gillum, and L. E. Mortenson, J. Am. Chem. Soc., 100, 3398 (1978);CrossRefGoogle Scholar
  90. 55.(c)
    S. P. Cramer, W. O. Gillum, K. O. Hodgson, L. E. Mortenson, E. I. Stiefel, J. R. Chisnell, W. J. Brill, and V. K. Shah, J. Am. Chem. Soc., 100, 3814 (1978).CrossRefGoogle Scholar
  91. 56.(a)
    T. E. Wolff, J. M. Berg, C. Warrick, K. O. Hodgson, and R. H. Holm, J. Am. C. S., 100, 4630 (1978);CrossRefGoogle Scholar
  92. 57.(b)
    T. E. Wolff, J. M. Berg, K. O. Hodgson, R. B. Frankel, and R. H. Holm, J. Am. C. S., 101, 4140 (1979);CrossRefGoogle Scholar
  93. 57.(c)
    G. Christou, C. D. Garner, F. E. Mabbs and T. J. King, J. C. S. Chem. Commun., 740 (1978);Google Scholar
  94. 57.(d)
    G. Christou, C. D. Garner, F. E. Mabbs, and M. G. B. Drew, ibid., 91 (1979);Google Scholar
  95. 57.(e)
    S. R. Acott, G. Christou, C. D. Garner, T. J. King, F. E. Mabbs, and R. M. Miller, Inorg. Chim. Acta., 35, L337 (1979);CrossRefGoogle Scholar
  96. 57.(f)
    T. E. Wolff, J. M. Berg, P. P. Power, K. O. Hodgson, R. H. Holm, and R. B. Frankel, J. C. S. Chem. Commun., 101, 5454 (1979);Google Scholar
  97. 57.(g)
    D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stremple, D. Swenson, A. Simopoulos, A. Kostikas, V. Petrouleas, and V. Papaefthymiou, J. Am. Chem. Soc., 102, 1732 (1980).CrossRefGoogle Scholar
  98. 57.(h)
    B. K. Teo and B. A. Averill, Biochem. Biophys. Res. Commun., 88, 1454 (1979);CrossRefGoogle Scholar
  99. 57.(i)
    R. H. Tieckelmann, H. C. Silvis, T. A. Kent, B. H. Huynh, J. V. Waszczak, B. K. Teo, and B. A. Averill, J. Am. Chem. Soc., 102, 5550 (1980);CrossRefGoogle Scholar
  100. 57.(k)
    C. D. Stout, D. Ghosh, V. Pattabhi, and A. Robbins, J. Biol. Chem., 255, 1797 (1980);Google Scholar
  101. 57.(d)
    Fujian Institute of Research on the Structure of Matter (PRC), private communication.Google Scholar
  102. 58.
    L. Powers, P. Eisenberger, and J. Stamatoff, Ann. N.Y. Acad. Sci., 307, 113 (1978).CrossRefGoogle Scholar
  103. 59.
    S. P. Cramer, J. H. Dawson, K. O. Hodgson, and L. P. Hager, J. Am. Chem. Soc., 100, 7282 (1978).CrossRefGoogle Scholar
  104. 60.
    V. W. Hu, S. I. Chan, and G. S. Brown,. Proc Natl. Acad. Sci. U.S.A., 74, 3821 (1977).CrossRefGoogle Scholar
  105. 61.
    T. Tullius, P. Frank, and K. O. Hodgson. Proc Natl. Acad. Sci. U.S.A., 75, 4069 (1978).CrossRefGoogle Scholar
  106. 62.
    For example, SSRL Publication List; SSRL Reports 78/10, 79/03, 79/10, 80/01, etc.Google Scholar
  107. 63.(a)
    B. K. Teo, K. Kijima, and R. Bau. J. Am. Chem. Soc., 100, 621 (1978)CrossRefGoogle Scholar
  108. 63.(b)
    B. K. Teo, P. Eisenberger, J. Reed, J. K. Barton, S. J. Lippard, J. Am. Chem. Soc., 100, 3225 (1978), and references cited therein.CrossRefGoogle Scholar
  109. 64.
    B. K. Teo, P. Eisenberger, and B. M. Kincaid, J. Am. Chem. Soc., 100, 1735 (1978).CrossRefGoogle Scholar
  110. 65.
    A. Michalowicz, J. J. Girerd, and J. Goulon, Inorg. Chem., 18, 3004 (1979).CrossRefGoogle Scholar
  111. 66.
    M. Verdaguer, A. Michalowicz, J. J. Girerd, N. Alberding, and O. Kahn, Inorg. Chem., 19, 3271 (1980).CrossRefGoogle Scholar
  112. 67.
    G. Martens, P. Rabe, N. Schwentner, and A. Werner, Phys. Rev. B, 17, 1481 (1978).CrossRefGoogle Scholar
  113. 68.(a)
    H. S. Chen, B. K. Teo, and R. Wang, Abst. 4th Inter. Conf. Liq. Amor. Metals, Grenoble, France, July 7–11, 1980;Google Scholar
  114. 68.(b)
    J. Wong, F. W. Lytle, R. B. Greegor, H. H. Liebermann, J. L. Walter, and F. E. Luborsky, Proc. 3rd Inter. Conf. Rapid. Quench. Metals, Sessex University, Vol. II, 1978, p. 345;Google Scholar
  115. 68.(c)
    T. M. Hayes, J. W. Allen, J. Tauc, B. C. Giessen, and J. J. Hauser, Phys. Rev. Lett., 40, 1282 (1978);CrossRefGoogle Scholar
  116. 68.(d)
    E. A. Stern, S. Rinaldi, E. Callen, S. Heald, and B. Bunker, J. Mag. Mater., 7, 188 (1978).CrossRefGoogle Scholar
  117. 69.(a)
    G. S. Brown, L. R. Testardi, J. H. Wernick, A. B. Hallak, and T. H. Geballe, Solid State Commun., 23, 875 (1977).CrossRefGoogle Scholar
  118. 70.
    J. B. Boyce and T. M. Hayes in Chapter 2 of Physics of Superionic Conductors, ed. M. B. Salamon, Vol. 15 of Topics in Current Physics, Springer-Verlag, Berlin (1979).Google Scholar
  119. 71.(a)
    S. H. Hunter, A. Bienenstock, and T. M. Hayes, in The Structure of NonCrystalline Materials, ed. P. H. Gaskell, Taylor and Francis, London, 1977, p. 73;Google Scholar
  120. 71.(b)
    S. H. Hunter, A. Bienenstock, and T. M. Hayes, in Amorphous and Liquid Semiconductors, ed. W. E. Spear, Univ. Edinburgh, Edinburgh, 1977, p. 78.Google Scholar
  121. 72.(a)
    P. Eisenberger and B. M. Kincaid, Chem. Phys. Lett., 36, 134 (1975);CrossRefGoogle Scholar
  122. 72.(b)
    D. R. Sandstrom, H. W. Dodgen and F. W. Lytle, J. Chem. Phys., 67, 473 (1977);CrossRefGoogle Scholar
  123. 72.(c)
    D. R. Sandstrom, J. Chem. Phys., 71, 2381 (1979).CrossRefGoogle Scholar
  124. 73.(a)
    E. D. Grozier, F. W. Lytle, D. E. Sayers, and E. A. Stern, Can J. Chem., 55, 1968 (1977);CrossRefGoogle Scholar
  125. 73.(b)
    J. Wong and F. W. Lytle, J. Non-Cryst. Solid., 37, 273 (1980).CrossRefGoogle Scholar
  126. 74.
    E. D. Crozier and A. J. Seary, Can. J. Phys., 58, 1388 (1980).Google Scholar
  127. 75.
    See Chapters 7 to 12 of this book.Google Scholar
  128. 76.(a)
    J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Am. Chem. Soc., 100, 2375 (1978);CrossRefGoogle Scholar
  129. 76.(b)
    J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Am. Chem. Soc., 99, 5217 (1977).CrossRefGoogle Scholar
  130. 77.(a)
    J. H. Sinfelt, G. H. Via, and F. W. Lytle, J. Chem. Phys., 68, 2009 (1978);CrossRefGoogle Scholar
  131. 77.(b)
    F. W. Lytle, NBS Spec. Publ. U.S.A., 475, 34 (1977);Google Scholar
  132. 77.(c)
    I. Bassi, F. W. Lytle, and G. Parravano, J. Catal., 42, 139 (1976);CrossRefGoogle Scholar
  133. 77.(d)
    G. H. Via, J. H. Sinfelt, F. W. Lytle, J. Chem. Phys., 71, 690 (1979);CrossRefGoogle Scholar
  134. 77.(e)
    J. H. Sinfelt, G. H. Via, and F. W. Lytle, J. Chem. Phys., 72, 4832 (1980);CrossRefGoogle Scholar
  135. 77.(f)
  136. 78.
    G. H. Via, J. H. Sinfelt, and F. W. Lytle, Chapter 10 of this book.Google Scholar
  137. 79.(a)
    S. M. Heald and E. A. Stern, Phys. Rev. B, 16, 5549 (1977);CrossRefGoogle Scholar
  138. 79.(b)
    L. I. Johansson and J. Stohr, Phys. Rev. Lett., 43, 1882 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Boon-Keng Teo
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations