Advertisement

Investigation of Electrical and Luminescent Properties of Diffused and Epitaxial p-n Junctions in Aluminum-Doped Silicon Carbide

  • V. I. Pavlichenko
  • I. V. Ryzhikov

Abstract

An investigation was made of the current-voltage, luminescence intensity-voltage, capacitance-frequency, luminescence intensity-current, and relaxation characteristics of p-n junctions in silicon carbide. These junctions were prepared by the diffusion of aluminum from the gaseous phase or from solutions in rare-earth elements, as well as by the epitaxial growth of aluminum- or nitrogen-doped p- and n-type SiC films on SiC crystals of the opposite type of conduction (the crystals were also doped with nitrogen and aluminum). A comparison of these characteristics for high-resistivity and low-resistivity samples showed that the junctions in the low-resistivity samples were abrupt and the compensated regions in these samples were thin and had a relatively low resistivity. The fast response, high luminescence efficiency at current densities ≥20–50 A/cm2, and the low noise of the low-resistivity diffused and epitaxial p-n junctions in aluminum-doped silicon carbide should be very useful in their applications as sources of nanosecond light pulses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    É. E. Violin and G. F. Kholuyanov, Fiz. Tverd. Tela, 6:1696 (1964).Google Scholar
  2. 2.
    G. F. Kholuyanov, Fiz. Tverd. Tela, 6:3336 (1964).Google Scholar
  3. 3.
    Yu. S. Blank, Yu. A. Vodakov, and A. A. Mostovskii, Fiz. Tverd. Tela, 5:2228 (1963).Google Scholar
  4. 4.
    V. I. Pavlichenko, I. V. Ryzhikov, T. G. Kmita, P. M. Karageorgii-Alkalaev, and A. Yu. Leiderman, Fiz. Tverd. Tela, 8:1239 (1966).Google Scholar
  5. 5.
    Yu. S. Krasnov, T. G. Kmita, I. V. Ryzhikov, V. I. Pavlichenko, O. T. Sergeev, and Yu. M. Suleimanov, Fiz. Tverd. Tela, 10:1140 (1968).Google Scholar
  6. 6.
    V. I. Pavlichenko and I. V. Ryzhikov, Fiz. Tekh. Poluprov., 2:1644 (1968).Google Scholar
  7. 7.
    C. T. Sah, R. N. Noyce, and W. Shockley, Proc. IRE, 45:1228 (1957).CrossRefGoogle Scholar
  8. 8.
    I. V. Ryzhikov, V. I. Pavlichenko, and T. G. Kmita, Radiotekhnika i Élektronika, 12:848 y (1967).Google Scholar
  9. 9.
    A. Yu. Leiderman and P. M. Karageorgii-Alkalaev, Radiotekhnika i Élektronika, 10:720 (1965).Google Scholar
  10. 10.
    V. M. Gusev, V. I. Kurinnyi, I. I. Kruglov, I. V. Ryzhikov, B. V. Sestroretskii, and Yu. A. Sin’kov, Fiz. Tekh. Poluprov., 3:903 (1969).Google Scholar
  11. 11.
    T. N. Morgan, Phys. Rev., 148:890 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    L. Patrick, J. Appl. Phys., 28:765 (1957).ADSCrossRefGoogle Scholar
  13. 13.
    G. A. Lomakina, Fiz. Tverd. Tela, 7:600 (1965).Google Scholar
  14. 14.
    V. I. Pavlichenko, I. V. Ryzhikov, and T. G. Kmita, this volume, p. 115.Google Scholar
  15. 15.
    C. T. Sah and V. G. K. Reddi, IEEE Trans. Electron Dev., ED-11(7):345 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • V. I. Pavlichenko
  • I. V. Ryzhikov

There are no affiliations available

Personalised recommendations