Threshold Energy for Electron-Hole Pair Production by Hot Electrons in GaAs

  • A. A. Gutkin
  • É. M. Magerramov
  • D. N. Nasledov
  • V. E. Sedov


Electron multiplication in GaAs p—n junctions with various impurity concentration gradients was measured in the range of low multiplication factors, M ≤ 1.1. The p—n junctions were formed by diffusion of zinc into n-type material. The method of Chynoweth and McKay was applied to the experimental results to obtain the threshold energy for impact ionization by electrons, εin = 1.8 ± 0.1 eV, and the mean free path of hot electrons (λ = 50 Å) in the case of scattering by optical phonons. By considering zero-phonon electron transitions accompanying impact ionization, it is shown that the experimental value of ε in corresponds to that expected from the approximate band structure of GaAs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. A. Logan, A. G. Chynoweth, and B. G. Cohen, Phys. Rev., 128:2518 (1962).ADSCrossRefGoogle Scholar
  2. 2.
    R. A. Logan and S. M. Sze, Proc. Eighth Intern. Conf. on Physics of Semiconductors, Kyoto, 1966, in: J. Phys. Soc. Japan, 21:Supplement, 434 (1966).Google Scholar
  3. 3.
    C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack, and W. Wiegmann, Phys. Rev., 134:A761 (1964).ADSCrossRefGoogle Scholar
  4. 4.
    R. A. Logan and H. G. White, J. Appl. Phys., 36:3945 (1965).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Baraff, Phys. Rev., 128:2507 (1962).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    A. G. Chynoweth and K. G. McKay, Phys. Rev., 108:29 (1957).ADSCrossRefGoogle Scholar
  7. 7.
    J. L. Moll and R. van Overstraeten, Solid State Electron., 6:147 (1963).ADSCrossRefGoogle Scholar
  8. 8.
    T. Ya. Puritis, Fiz. Tekh. Poluprov., 1:599 (1967).Google Scholar
  9. 9.
    M. D. Sturge, Phys. Rev., 127:768 (1962).ADSCrossRefGoogle Scholar
  10. 10.
    L. W. Aukerman, D. F. Kyser, and M. F. Millea, Solid State Electron., 8:119 (1965).ADSCrossRefGoogle Scholar
  11. 11.
    P. A. Wolff, Phys. Rev., 95:1415 (1954).ADSCrossRefGoogle Scholar
  12. 12.
    W. Shockley, Solid State Electron., 2:35 (1961).ADSCrossRefGoogle Scholar
  13. 13.
    W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, J. Appl. Phys., 32:2102 (1961).ADSCrossRefGoogle Scholar
  14. 14.
    A. R. Beattie, J. Phys. Chem. Solids, 23:1049 (1962).ADSCrossRefGoogle Scholar
  15. 15.
    R. J. Hodgkinson, Proc. Phys. Soc . (London) , 82:1010 (1963).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Gutkin, É. M. Magerramov, D. N. Nasledov, and V. E. Sedov, Fiz. Tverd. Tela, 8:712 (1966).Google Scholar
  17. 17.
    J. R. Hauser, J. Appl. Phys., 37:507 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    W. Saslow, T. K. Bergstresser, C. Y. Fong, M. L. Cohen, and D. Brust, Solid State Commun., 5:667 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • A. A. Gutkin
    • 1
  • É. M. Magerramov
    • 1
  • D. N. Nasledov
    • 1
  • V. E. Sedov
    • 1
  1. 1.A. F. Ioffe Physicotechnical InstituteAcademy of Sciences of the USSRLeningradRussia

Personalised recommendations