Investigation of DC Injection Lasers

  • P. G. Eliseev
  • A. I. Krasil’nikov
  • M. A. Man’ko
  • V. P. Strakhov


A batch of injection lasers, based on epitaxial p-n junctions in gallium arsenide, was investigated under continuous working conditions using low currents at liquid-nitrogen temperature. When the laser threshold was crossed, the following effects were usually observed: the differential resistance of the laser diode became constant; the narrowing of the electroluminescence spectrum in the nonlasing modes stopped; the shift of the peak of the wide luminescence band with increasing current also stopped. These tendencies indicated uniform broadening of the emission band of an injection laser. Multimode laser emission was observed and the intensity of the radiation in the wings of the line continued to increase, and this increase was observed also at wavelengths shorter than the coherent emission wavelengths. In some cases, the voltage across a p-n junction continued to increase somewhat even under laser emission conditions. The random nature of the quantitative aspect of these deviations from uniformity confirmed an earlier suggestion of the spatial origin of the multimode emission.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. Burns and M. I. Nathan, Proc. IEEE, 51:471 (1963).CrossRefGoogle Scholar
  2. 2.
    H. Statz, C. L. Tang, and J. M. Lavine, J. Appl. Phys., 35:2581 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    J. M. Lavine and A. A. Iannini, J. Appl. Phys., 36:402 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Nannichi, Japan. J. Appl. Phys., 3:233 (1964).ADSCrossRefGoogle Scholar
  5. 5.
    B. I. Gladkii, D. N. Nasledov, B. V. Tsarenkov, Fiz. Tverd. Tela, 8:3282 (1966).Google Scholar
  6. 6.
    M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Letters, 11:152 (1963);ADSCrossRefGoogle Scholar
  7. 6a.
    M. I. Nathan, G. Burns, and A. B. Fowler, Proc. Seventh Intern. Conf. on Physics of Semiconductors, Paris, 1964, Vol. 4, Radiative Recombination in Semiconductors, publ. by Dunod, Paris (1965); Academic Press, New York (1965), p. 205.Google Scholar
  8. 7.
    P. P. Sorokin, J. D. Axe, and J. R. Lankard, J. Appl. Phys., 34:2553 (1963).ADSCrossRefGoogle Scholar
  9. 8.
    J. I. Pankove, Proc. Eighth Intern. Conf. on Physics of Semiconductors, Kyoto, 1966, in: J. Phys. Soc. Japan, 21 (Suppl.):298 (1966).Google Scholar
  10. 9.
    G. Lasher and F. Stern, Phys. Rev., 133:A553 (1964).ADSCrossRefGoogle Scholar
  11. 10.
    H. Haug, Z. Physik, 194:482 (1966); 195:74 (1966).ADSCrossRefGoogle Scholar
  12. 11.
    A. B. Fowler, J. Appl. Phys., 35:2275 (1964); C. E. Kelly, IEEE Trans. Electron. Dev., ED-12:1 (1965).ADSCrossRefGoogle Scholar
  13. 12.
    P. G. Eliseev, A. A. Novikov, and V. B. Fedorov, Zh. Éksp. Teor. Fiz. Pis. Red., 2:58 (1965).Google Scholar
  14. 13.
    G. E. Pikus and A. G. Aronov, Fiz. Tverd. Tela, 7:3548 (1965).Google Scholar
  15. 14.
    H. Rieck, Solid State Electron., 8:83 (1965).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • P. G. Eliseev
    • 1
  • A. I. Krasil’nikov
    • 1
  • M. A. Man’ko
    • 1
  • V. P. Strakhov
    • 1
  1. 1.P. N. Lebedev Physics InstituteAcademy of Sciences of the USSRMoscowRussia

Personalised recommendations