Advertisement

Impurity Photoeffect in GaAs p-n Junctions

  • A. A. Gutkin
  • É. M. Magerramov
  • D. N. Nasledov
  • V. E. Sedov

Abstract

An investigation was made of the photo-emf spectra of GaAs p—n junctions at ∼90 and 293°K in the photon energy range ħω ≥ 0.46 eV , using modulated or constant illumination and various values of the reverse bias. T wo types of sample were investigated: those prepared by the diffusion of sulfur in p-type gallium arsenide and those prepared by the diffusion of zinc in n-type crystals. The photo-emf spectra obtained using modulated illumination at T 90°K indicated the presence of impurities in the samples prepared by the diffusion of sulfur; these impurities had energy levels at 0.49, 0.54, 0.59, 0.65, 0.73, 0.90, and 1.05 eV. These levels were compared with the known levels of impurities usually encountered in gallium arsenide (such as copper, oxygen, and iron) and with lattice defect levels. In a certain part of the spec - trum, the photosensitivity decreased with time, which was attributed to the liberation of carriers from impurity levels. It was found that the steady-state photo-emf appeared only at photon energies ħω ⋟ 0.5 Eg and it was due to the single-stage optical excitation of minority carriers in the space-charge layer. The transient photo-emf depended weakly on the reverse bias across the p-n junction but the steady-state effect was increased strongly by such a bias.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Lange, Physik. Z., 32:850 (1931).Google Scholar
  2. 2.
    V. E. Lashkarev and K. M. Kosonogova, Izv. Akad. Nauk SSSR, Ser. Fiz., 5:478 (1941).Google Scholar
  3. 3.
    F. M. Berkovskii and S. M. Ryvkin, Fiz. Tverd. Tela, 4:366 (1962).Google Scholar
  4. 4.
    F. M. Berkovskii and S. M. Ryvkin, Fiz. Tverd. Tela, 4:376 (1962).Google Scholar
  5. 5.
    A. A. Gutkin, M. M. Koziov, D. N. Nasledov, and V. E. Sedov, Fiz. Tverd. Tela, 5:3617 (1963).Google Scholar
  6. 6.
    A. A. Gutkin, É. M. Magerramov, D. N. Nasledov, and V. E. Sedov, Fiz. Tekh. Poluprov., 1:1001 (1967).Google Scholar
  7. 7.
    V. I. Fistul’ and A. M. Agaev, Fiz. Tverd. Tela, 7:3681 (1965).Google Scholar
  8. 8.
    N. A. Vitovskii, T. V. Mashovets, S. M. Ryvkin, and R. Yu. Khansevarov, Fiz. Tverd. Tela, 5:3510 (1963).Google Scholar
  9. 9.
    R. N. Hall and J. H. Racette, J. Appl. Phys., 35:379 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    D. S. Domanevskii and V. D. Tkachev, Fiz. Tekh. Poluprov., 1:377 (1967).Google Scholar
  11. 11.
    R. W. Haisty, Appl. Phys. Letters, 7:208 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    M. D. Sturge, Phys. Rev., 127:768 (1962).ADSCrossRefGoogle Scholar
  13. 13.
    T. S. Moss, Optical Properties of Semi-Conductors, Butterworths, London (1959).Google Scholar
  14. 14.
    A. N. Imenkov, M. M. Kozlov, D. N. Nasledov, and B. V. Tsarenkov, Fiz. Tverd. Tela, 8:2098 (1966).Google Scholar
  15. 15.
    S. M. Ryvkin, Photoelectric Effects in Semiconductors, Consultants Bureau, New York (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • A. A. Gutkin
    • 1
  • É. M. Magerramov
    • 1
  • D. N. Nasledov
    • 1
  • V. E. Sedov
    • 1
  1. 1.A. F. Ioffe Physicotechnical InstituteAcademy of Sciences of the USSRMoscowRussia

Personalised recommendations