Lakes pp 91-126 | Cite as

Man-Made Chemical Perturbation of Lakes

  • W. Stumm
  • P. Baccini

Abstract

Pollution may be defined as an alteration of man’s surroundings in such a way as they become unfavorable to him. This implies that pollution is not solely a matter of the addition of contaminants or pollutants to the environment, but it can also result from other direct or indirect consequences of man’s actions. Most of the energy utilized by our industrial society for its own advantage (heat production, manipulation of the landscape, urban construction, agriculture, forestry, geological exploitations, construction of dams) ultimately affects the ecosystems and creates chemical perturbations. Man—as a terrestrial being—interferes primarily with the terrestrial environment; because of the interdependence of the land and water ecosystems and because of the extreme sensitivity of the latter, the stress imposed upon the environment by civilization becomes primarily reflected in the aquatic ecosystems.

Keywords

Heavy Metal Lake Water Great Lake Drainage Area Mass Balance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. (1975). Environmental and microbiological problems arising from recalcitrant molecules. Microbial. Ecol., 2: 17–27.CrossRefGoogle Scholar
  2. Ambühl, H. (1975). Versuch der Quantifizierung der Beeinflussung des Oekosystems durch chemische Faktoren: Stehende Gewässer. Schweiz. Z. Hydrol., 37: 35–52.Google Scholar
  3. Aston, S. R., et al. (1973). Mercury in lake sediments: A possible indicator of technological growth. Nature, 241: 450–451.PubMedCrossRefGoogle Scholar
  4. Baccini, P. (1976). Untersuchungen über den Schwermetall- haushalt in Seen. Schweiz. Z. Hydrol., 38: 121–158.Google Scholar
  5. Baccini, P., H. Hohl, and Th. Bundi. (1977). Phenomenology and modelling of heavy metal distribution in lakes. Verh. Int. Verein. Limnol. (In preparation).Google Scholar
  6. Baccini, P., and P. V. Roberts. (1976). Die Belastung der Gewässer durch Metalle. Eine akute oder künftige Gefahr? Neue Zürcher Zeitung No. 40, 18 February 1976.Google Scholar
  7. Beamisch, R. J., and J. C. Van Loon. (1977). Precipitation loading of acid and heavy metals to a small acid lake near Sudbury, Ontario. J. Fish. Res. Board Can., 34: 649–658.CrossRefGoogle Scholar
  8. Beeton, A. M. (1969). Changes in the environment and biota of the Great Lakes. Pp. 150–187. In: Eutrophication: Causes, Consequences, Correctives. Natl. Acad. Sci., Washington, D.C.Google Scholar
  9. Bundi, Th. (1977). Untersuchungen zur Aufnahme von Kupfer durch Chlorella pyrenoidosa in Abhängigkeit der Kupferspeziierung. Thesis Swiss Fed. Inst. Technol., Zurich.Google Scholar
  10. Chapra, St. C. (1977). Total phosphorus model for the Great Lakes. J. Env. Engr. Div. Am. Soc. Civil Eng., 103: 147–161.Google Scholar
  11. Chiou, C. T., V. H. Freed, D. W. Schmedding, and R. L. Kohnert. (1977). Partition coefficient and bioaccumulation of selected organic chemicals. Envir. Sci. Technol., 11: 475–478.CrossRefGoogle Scholar
  12. Cogbill, C. V. (1975). Thesis, Cornell University, Ithaca, N.Y.Google Scholar
  13. Damiani, V., and R. L. Thomas. (1974). Mercury in the sediments of the Pallanza Basin. Nature, 251: 696–697.CrossRefGoogle Scholar
  14. Degens, E. T., A. Paluska, and E. Eriksson. (1976). Rates of soil erosion. Pp. 185–191. In: B. H. Svensson and R. Söderlund (eds.), Nitrogen, Phosphorus and Sulfur-Global Cycles. SCOPE Report 7, Ecol. Bull., Stockholm, Sweden.Google Scholar
  15. Dobzhansky, T. (1957). Evolution, Genetics and Man. Wiley, New York, NY.Google Scholar
  16. Emerson, St. (1975). Chemically enhanced CO2 gas exchange in a eutrophic lake: A general model. Limnol. Oceanogr., 20: 743–753.CrossRefGoogle Scholar
  17. Feth, J. H., C. E. Roberson, and W. L. Polzer. (1964). Sources of mineral constituents in water from granitic rocks, Sierra Nevada, California and Nevada. U.S. Geol. Surv. Water-Supply Paper 1535-I, 170.Google Scholar
  18. Förstner, U. (1976). Lake sediments as indicators of heavy-metal pollution. Naturwissenschaften, 63: 465.PubMedCrossRefGoogle Scholar
  19. Förstner, U., and G. Müller. (1974). Schwermetalle in Flüssen und Seen. Springer-Verlag.Google Scholar
  20. Förstner, U., G. Müller, and G. Wagner. (1974). Schwermetalle in den Sedimenten des Bodensees. Naturwissenschaften, 61: 270–272.CrossRefGoogle Scholar
  21. Gächter, R. (1976). Untersuchungen über die Beeinflussung der planktischen Photosynthese durch anorganische Metallsalze im eutrophen Alpnachersee und der mesotrophen Horwer Bucht. Schweiz. Z. Hydrol., 38: 97–119.Google Scholar
  22. Gächter, R., and O. J. Furrer. (1972). Der Beitrag der Landwirtschaft zur Eutrophierung der Gewässer in der Schweiz. I. Ergebnisse von direkten Messungen im Einzugsgebiet verschiedener Vorfluter. Schweiz. Z. Hydrol., 34: 41–70.Google Scholar
  23. Garrels, R. M., and F. T. MacKenzie. (1967). Origin of the chemical compositions of some springs and lakes. Pp. 222–242. In: W. Stumm (ed.), Equilibrium Concepts of Natural Water Systems. Adv. Chem. Series 67.Google Scholar
  24. Garrets, R. M., and F. T. MacKenzie. (1971). Evolution of Sedimentary Rocks. W. W. Norton, New York, NY.Google Scholar
  25. Gillette, R. (1974). Cancer and the environment (II): Groping for new remedies. Science, 186: 242.PubMedCrossRefGoogle Scholar
  26. Goldberg, E. D. (1972). Man’s role in the major sedimentary cycle. Pp. 267–288. In: D. Dyrssen and D. Jagner (eds.), The Changing Chemistry of the Oceans. Almqvist malongxiang Wiksell, Stockholm.Google Scholar
  27. Goldberg, E. D. (1976). The Health of the Oceans. Unesco Press, Paris.Google Scholar
  28. Grob, K., and G. Grob. (1973). Organische Stoffe in Zürichs Wasser. Neue Zürcher Zeitung, 10 September 1973.Google Scholar
  29. Hagen, A., and A. Langeland. (1973). Polluted snow in southern Norway and the effect of the meltwater on freshwater and aquatic organisms. Envir. Poll., 5: 45–57.CrossRefGoogle Scholar
  30. Hayes, F. R., and J. E. Phillips. (1958). Lake water and sediment. IV. Radiophosphorus equilibrium with mud, plants, and bacteria under oxidized and reduced conditions. Limnol. Oceanogr., 3: 459–475.CrossRefGoogle Scholar
  31. Hendrey, G. R., and R. F. Wright. (1976). Acid precipitation in Norway: Effects on aquatic fauna. J. Great Lakes Res., 2: 192 (Suppl. 1).Google Scholar
  32. Hobbie, J. E., and R. T. Wright. (1965). Bioassay with bacterial uptake kinetics: Glucose in freshwater. Limnol. Oceanogr., 10: 471–474.CrossRefGoogle Scholar
  33. Hohl, H., and W. Stumm. (1976). Interaction of Pb2+ with hydrous y-AI2O3. J. Colloid Interface Sci., 55: 281–288.CrossRefGoogle Scholar
  34. Hynes, H. B. N. (1960). The Biology of Polluted Waters. Liverpool Univ. Press., Liverpool.Google Scholar
  35. Imboden, D. M. (1973). Limnologische Transport-und Nährstoff-modelle. Schweiz. Z. Hydrol., 35: 29–68.Google Scholar
  36. Imboden, D. M. (1974). Phosphorus model of lake eutrophication. Limnol. Oceanogr., 19: 297–304.CrossRefGoogle Scholar
  37. Imboden, D. M., and R. Gächter. (1975). Modelling and control of lake eutrophication. Proc. 6th Triennial World Congress Int. Fed. Automatic Control, August 1975. Part 3, Contribution No. 61. 1.Google Scholar
  38. Imboden, D. M., and R. Gächter. (1977). A dynamic lake model for trophic state prediction. Int. J. Ecolog. Modelling. (In press).Google Scholar
  39. Imboden, D. M., and W. Stumm. (1973). Der Einfluss des Menschen auf die geochemischen Kreisläufe in der Atmopshäre. Chimia, 27: 155–165.Google Scholar
  40. Jannasch, H. W. (1967). Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr., 12: 264–271.CrossRefGoogle Scholar
  41. Jernelöv, A. (1972). Factors in the transformation of mercury to methylmercury. Pp. 167–172. Mercury and food chains. Pp. 174–177. In: R. Hartung and B. D. Dinman (eds.), Environmental Mercury Contamination. Ann Arbor Science, Ann Arbor, MI.Google Scholar
  42. Kramer, J. (1967). Equilibrium models and composition of the Great Lakes. Pp. 243–254. In: W. Stumm (ed.), Equilibrium Concepts of Natural Water Systems. Adv. Chem. Ser. 67.Google Scholar
  43. Krummenacher, Th. (1976). Die Nährstoffbilanz des Alpnachersees. Thesis, Swiss Fed. Inst. Technol., Zurich.Google Scholar
  44. Lane, P., and R. Levins. (1977). The dynamics of aquatic systems. 2. The effects of nutrient enrichment on model plankton communities. Limnol. Oceanogr., 22: 454–471.CrossRefGoogle Scholar
  45. Leidner, H., R. Gloor, and K. Wuhrmann. (1976). Abbaukinetik linearer Alkylbenzolsulfonate. Tenside Deter., 13: 122–130.Google Scholar
  46. Lerman, A. (1974). Eutrophication and water quality of lakes: Control by water residence time and transport to sediments. Hydrol. Sci. Bull., 19: 25–34.CrossRefGoogle Scholar
  47. Lerman, A., and G. J. Brunskill. (1971). Migration of major constituents from lake sediments into lake water and its bearing on lake water composition. Limnol. Oceanogr., 16: 880–890.CrossRefGoogle Scholar
  48. Lerman, A., and R. R. Weiler. (1971). Diffusion of chloride and sodium in Lake Ontario sediment: 1. Ionic interactions and 2. accumulated amount of a reacting species. Earth Planet. Sci. Let., 13: 220–221.CrossRefGoogle Scholar
  49. Li, Y. H. (1976). Population growth and environmental problems in Taiwan (Formosa): A case-study. Envir. Conserv., 3: 171–177.CrossRefGoogle Scholar
  50. Likens, G. E., and F. H. Bormann. (1974). Acid rain: A serious regional environmental problem. Science, 184: 1176–1179.PubMedCrossRefGoogle Scholar
  51. Lotka, A. J. (1924). Elements of Physical Biology. Corrected reprint by Dover Publications Inc., New York, NY, in 1956; new title: Elements of Mathematical Biology.Google Scholar
  52. Margalef, R. (1973). Ecological theory and prediction in the study of interaction between man and the rest of the biosphere. Pp. 307–353. In: H. Sioli (ed.), Oekologie and Lebensschutz in internationaler Sicht (Ecology and Bioprotection: International Conclusions). Verlag Rombach, Freiburg/Germany.Google Scholar
  53. McCarty, P. L. (1971). Energetics and bacterial growth. Pp. 495–531. In: S. J. Faust and J. V. Hunter (eds.), Organic Compounds in Aquatic Environments. M. Dekker, New York, NY.Google Scholar
  54. Morel, F., R. E. McDuff, and J. H. Morgan. (1973). Interactions and chemostasis in aquatic chemical systems: Role of pH, pE, solubility, and complexation. Pp. 157–200. In: P. R. Singer (ed.), Trace Metals and Metal-Organic Interactions in Natural Waters. Ann Arbor Science, Ann Arbor, MI.Google Scholar
  55. Morel, F., and J. J. Morgan. (1972). A numerical method for computing equilibria in aqueous chemical systems. Environ. Sci. Technol., 6: 58–67.CrossRefGoogle Scholar
  56. Morgan, J. J. (1967). Applications and limitations of chemical thermodynamics in water systems. Pp. 1–29. In: W. Stumm (ed.), Equilibrium Concepts of Natural Water Systems. Adv. Chem. Ser. 67.Google Scholar
  57. Mortimer, C. H. (1971). Chemical exchanges between sediments and water in the Great Lakes-speculations on probable regulatory mechanisms. Limnol. Oceanogr., 16: 387–404.CrossRefGoogle Scholar
  58. Murray, J. W. (1975). The interaction of metal ions at the manganese dioxide-solution interface. Geochim. Cosmochim. Acta, 39: 505–519.CrossRefGoogle Scholar
  59. Odén, S., and T. Ahl. (1970). Ymer Arsbok 103.Google Scholar
  60. Page, T., R. H. Harris, and S. S. Epstein. (1976). Drinking water and cancer mortality in Louisiana. Science, 193: 55–57.PubMedCrossRefGoogle Scholar
  61. Patrick, R., M. H. Hohn, and J. H. Wallace. (1954). A new method for determining the pattern of the diatom flora. Proc. Nat. Acad. Sci. USA, 259: 1–12.Google Scholar
  62. Ridley, W. P., L. J. Dizikes, and J. M. Wood. (1977). Biomethylation of toxic elements in the environment. Science, 197: 329–339.PubMedCrossRefGoogle Scholar
  63. Roberts, P. V., H. R. Hegi, A. Weber, and H. R. Krähenbühl. (1977). Metals in municipal wastewater and their elimination in sewage treatment. IAWPR Workshop, Vienna, 1975. (In press).Google Scholar
  64. Rodhe, H. (1972). A study of the sulfur budget for the atmosphere over Northern Europe. Tellus, 24: 128–138.CrossRefGoogle Scholar
  65. Santschi, P. (1975). Chemische Prozesse im Bielersee. The-sis, University of Berne.Google Scholar
  66. Schindler, P. W. (1967). Heterogeneous equilibria involving oxides, hydroxides, carbonates, and hydroxide carbonates. Pp. 196–221. In: W. Stumm (ed.), Equilibrium Concepts in Natural Water Systems. Adv. Chem. Ser. 67.Google Scholar
  67. Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 184: 897–899.PubMedCrossRefGoogle Scholar
  68. Schindler, P. W. (1976). The regulation of trace metal concentrations in natural water systems: A chemical approach. J. Great Lakes Res., 2: 132–145 (Suppl. 1).Google Scholar
  69. Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195: 260–262.PubMedCrossRefGoogle Scholar
  70. Schindler, P. W., B. Fürst, R. Dick, and P. U. Wolf. (1976). Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+ and Pb2+. J. Colloid Interface Sci., 55: 469–475.CrossRefGoogle Scholar
  71. Scholz, A. T., R. M. Horrall, J. C. Cooper, and A. D. Hasler. (1976). Imprinting to chemical cues: The basis for home stream selection in salmon. Science, 192: 1247–1249.PubMedCrossRefGoogle Scholar
  72. Shannon, E. E., and P. L. Brezonik. (1972). Relationship between lake trophic state and nitrogen and phosphorus loading rates. Environ. Sci. Technol., 6: 719–725.CrossRefGoogle Scholar
  73. Shapiro, J. (1973). Blue-green algae: Why they become dominant. Science, 179: 382–384.PubMedCrossRefGoogle Scholar
  74. Sillén, L. G., and A. E. Martell. (1964, 1971). Stability Constants of Metal-Ion Complexes. Chem. Soc. London, Special Publ. No. 17 and No. 25.Google Scholar
  75. Sondheimer, E., and J. B. Simeone. (eds.). (1970). Chemical Ecology. Academic Press, New York, NY.Google Scholar
  76. Steele, J. H. (1974). The Structure of Marine Ecosystems. Harvard Univ. Press, Cambridge, MA.Google Scholar
  77. Stumm, W. (1977). What is the Pe of the Sea? Thalassia Jugoslavica. (In press).Google Scholar
  78. Stumm, W., and P. A. Brauner. (1975). Chemical speciation. In: J. P. Riley and G. Skirrow (eds.), Chemical Oceanography. Vol. I, 2nd edition. Academic Press, New York, NY.Google Scholar
  79. Stumm, W., H. Hohl, and F. Dalang. (1976). Interaction of metal ions with hydrous oxide surfaces. Croatica Chem. Acta, 48: 491–504.Google Scholar
  80. Stumm, W., and J. J. Morgan. (1970). Aquatic Chemistry. Wiley-Interscience, New York, NY.Google Scholar
  81. Stumm, W., and E. Stumm-Zollinger. (1971). Chemostasis and homeostasis in aquatic ecosystems; principles of water pollution control. In: J. D. Hem (ed.), Non-Equilibrium Systems in Natural Waters. Adv. Chem. Series 106.Google Scholar
  82. Sunda, W., and R. R. L. Guillard. (1976). The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Marine Res., 34: 511–529.Google Scholar
  83. Tessenow, U. (1974). Lösungs-, Diffusions-und Sorptionsprozesse in der Oberschicht von Seesedimenten. IV. Reaktionsmechanismen und Gleichgewichte im System Eisen-Mangan-Phosphat im Hinblick auf die Vivianitakkumulation im Ursee. Arch. Hydrobiol., 47: 1–79 (Suppl.).Google Scholar
  84. Tessenow, U. (1975). Akkumulationsprozesse in der Maximaltiefe von Seen durch postsedimentäre Konzentrationswanderung. Verh. Int. Verein. Limnol., 19: 1251–1262.Google Scholar
  85. Thomas, R. L. (1972). The distribution of mercury in the sediments of Lake Ontario. Can. J. Earth Sci., 9: 636–651.CrossRefGoogle Scholar
  86. Thorstenson, D. C. (1970). Equilibrium distribution of small organic molecules in natural waters. Geochim. Cosmochim. Acta, 34: 745–770.CrossRefGoogle Scholar
  87. Tschopp, J. (1977). Thesis, Swiss Fed. Inst. Technol., Zurich (to be published).Google Scholar
  88. Turekian, K. K. (1969). The oceans, streams, and atmosphere. Pp. 297–323. In: K. H. Wedepohl (ed.), Handbook of Geochemistry. Vol. I. Springer-Verlag.Google Scholar
  89. Vernet, J. P. (1972). Levels of mercury in the sediments of some Swiss lakes including Lake Geneva and the Rhone River. Eclogae Geol. Helv., 65: 293.Google Scholar
  90. Vollenweider, R. A. (1968). Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. Technical Report DAS/CSl/68. 27 OECD, Paris.Google Scholar
  91. Vollenweider, R. A. (1969). Möglichkeiten und Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch. Hydrobiol., 66: 1–36.Google Scholar
  92. White, D. E., J. D. Hem, and G. A. Waring. (1963). Chemical composition of subsurface waters. U.S. Geol. Survey Profess. Paper 440 F, 14.Google Scholar
  93. Williams, J. D. H., J.-M. Jacquet, and R. L. Thomas. (1976). Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish. Res. Can., 33: 413–429.CrossRefGoogle Scholar
  94. Winchester, J. W., and G. D. Nifong. (1971). Water pollution in Lake Michigan by trace elements from pollution aerosol fallout. Water, Air Soil Poll., 1: 50–64.CrossRefGoogle Scholar
  95. Winner, R. W., J. Scott van Dyke, N. Caris, and M. P. Farrel. (1974). Response of the macroinvertebrate fauna to a copper gradient in an experimentally-polluted stream. Verh. Int. Verein. Limnol., 19: 2121–2127.Google Scholar
  96. Wood, J. M. (1975). Biological cycles for elements in theGoogle Scholar
  97. environment. Naturwissenschaften,62:357–364.Google Scholar
  98. World Health Organization (1976). Health Hazards fromNew Environmental Pollutants. Technical Report Series 586, Geneva.Google Scholar
  99. Wright, R. F., and E. T. Gjessing. (1976). Changes in the chemical composition of lakes. Ambio, 5: 219–223.Google Scholar
  100. Wuhrmann, K. (1972). Stream purification. In: R. Mitchell (ed.), Water Pollution Microbiology. Wiley-Interscience, New York, NY.Google Scholar
  101. Wuhrmann, K. (1973). Bedeutung der Mikroorganismen für aquatische Stoffkreisläufe. Pathol. Microbiol., 39: 55–70.Google Scholar
  102. Wuhrmann, K. (1976a). Chemical impact on inland aquatic ecosystems. Pure Appl. Chem., 45: 193–198.CrossRefGoogle Scholar
  103. Wuhrmann, K. (1976b). Grenzen der mikrobiellen Selbstreinigung der Oberflächengewässer und ihre Konsequenzen für die Trinkwasseraufbereitung. Gas-Wasser-Abwasser, 57: 184–193.Google Scholar
  104. Wuhrmann, K., and E. Eichenberger. (1975). Experiments on the effects of inorganic enrichment of rivers on periphyton primary production. Verh. Int. Verein. Limnol., 19: 2028–2034.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • W. Stumm
  • P. Baccini

There are no affiliations available

Personalised recommendations