Abstract
The carbonyl group is one of the most prevalent of the functional groups; great importance is therefore attached both to mechanistic studies and synthetic processes involving carbonyl compounds. Reactions involving carbonyl groups are also exceptionally important in biological processes. Most of the reactions of aldehydes, ketones, esters, amides, and other carboxylic acid derivatives are intimately associated with the carbonyl group. In Chapter 7, the role of the carbonyl group in stabilizing carbanion centers was discussed. The first two chapters of Part B deal mainly with the chemistry of carbonyl compounds, reflecting their importance in formation of carbon—carbon bonds in organic synthesis. In this chapter, the primary topic for discussion will be the characteristic mechanistic patterns of reactions at carbonyl centers.
Keywords
Proton Transfer Carbonyl Compound Alkoxy Group Ester Hydrolysis Tetrahedral IntermediatePreview
Unable to display preview. Download preview PDF.
General References
- W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969.Google Scholar
- M. L. Bender, Mechanisms of Homogeneous Catalysis from Protons to Proteins, Wiley—Interscience, New York, 1971.Google Scholar
- T. C. Bruice and S. J. Benkovic, Bioorganic Mechanisms, Benjamin, New York, 1966.Google Scholar
- A. J. Kirby and A. R. Fersht, in Progress in Bioorganic Chemistry, Vol. 1, E. T. Kaiser and F. J. Kezdy (eds.), Wiley-Interscience, New York, 1971, pp. 1–82.Google Scholar
- S. Patai (ed.), The Chemistry of the Carbonyl Group, Wiley-Interscience, New York, 1974.Google Scholar
- S. Patai (ed.), The Chemistry of Carboxylic Acids and Esters, Wiley-Interscience, New York, 1969.Google Scholar
- J. E. Zabicky (ed.), The Chemistry of Amides, Wiley-Interscience, New York, 1970.Google Scholar
Chapter 8
- 1.R. P. Bell, Adv. Phys. Org. Chem. 4, 1 (1966).CrossRefGoogle Scholar
- 2a.A. Lapworth and R. H. F. Manske, J. Chem. Soc. 1976 (1930).Google Scholar
- b.T. H. Fife, J. E. C. Hutchins, and M. S. Wang, J. Am. Chem. Soc. 97, 5878 (1975).CrossRefGoogle Scholar
- c.K. Bowden and A. M. Last, Chem. Commun. 1315 (1970).Google Scholar
- d.P. R. Young and W. P. Jencks, J. Am. Chem. Soc. 99, 1206 (1977).CrossRefGoogle Scholar
- 3a,b.M. M. Kreevoy and R. W. Taft, Jr., J. Am. Chem. Soc. 77, 5590 (1955).CrossRefGoogle Scholar
- c,d.M. M. Kreevoy, C. R. Morgan, and R. W. Taft, Jr., J. Am. Chem. Soc. 82, 3064 (1960).CrossRefGoogle Scholar
- e.T. H. Fife and L. H. Brod, J. Org. Chem. 33, 4136 (1968).CrossRefGoogle Scholar
- 4.R. G. Bergstrom, M. J. Cashen, Y. Chiang, and A. J. Kresge, J. Org. Chem. 44, 1639 (1979).CrossRefGoogle Scholar
- 5a.T. Maugh, II and T. C. Bruice, J. Am. Chem. Soc. 93, 3237 (1971).CrossRefGoogle Scholar
- b.L. E. Eberson and L.-Å. Svensson, J. Am. Chem. Soc. 93, 3827 (1971).CrossRefGoogle Scholar
- c.A. Williams and G. Salvadori, J. Chem. Soc. Perkin Trans. II 883 (1972).Google Scholar
- d.G. A. Rogers and T. C. Bruice, J. Am. Chem. Soc. 96, 2463 (1974).CrossRefGoogle Scholar
- e.K. Bowden and G. R. Taylor, J. Chem. Soc. B 145, 149 (1971);CrossRefGoogle Scholar
- M. S. Newman and A. L. Leegwater, J. Am. Chem. Soc. 90, 4410 (1968).CrossRefGoogle Scholar
- f.T. C. Bruice and S. J. Benkovic, J. Am. Chem. Soc. 85, 1 (1963).CrossRefGoogle Scholar
- 6.E. H. Cordes and W. P. Jencks, J. Am. Chem. Soc. 85, 2843, (1963).CrossRefGoogle Scholar
- 7.E. Anderson and T. H. Fife, J. Am. Chem. Soc. 95, 6437 (1973).CrossRefGoogle Scholar
- 8.M. W. Williams and G. T. Young, J. Chem. Soc., 3701 (1964).Google Scholar
- 9.R. Breslow and C. McAllister, J. Am. Chem. Soc. 93, 7096 (1971).CrossRefGoogle Scholar
- 10.B. Capon and K. Nimmo, J. Chem. Soc., Perkin Trans. II, 1113 (1975).Google Scholar
- 11.H. R. Mahler and E. H. Cordes, Biological Chemistry, Harper and Row, New York, 1966, p. 201.Google Scholar
- 12.J. Hajdu and G. M. Smith, J. Am. Chem. Soc. 103, 6192 (1981).CrossRefGoogle Scholar
- 13.T. Okuyama, H. Shibuya, and T. Fueno, J. Am. Chem. Soc. 104, 730 (1982).CrossRefGoogle Scholar
- 14.R. P. Bell, M. H. Rand, and K. M. A. Wynne-Jones, Trans. Faraday Soc. 52, 1093 (1956).CrossRefGoogle Scholar
- 15.J. Hine, M. S. Cholod, and W. K. Chess, Jr., J. Am. Chem. Soc. 95, 4270 (1973).CrossRefGoogle Scholar
- 16.J. T. Edward and S. C. Wong, J. Am. Chem. Soc. 101, 1807 (1979).CrossRefGoogle Scholar
- 17.A. J. Kirby and P. W. Lancaster, J. Chem. Soc., Perkin Trans. II, 1206 (1972).Google Scholar
- 18a.T. C. Bruice and I. Oka, J. Am. Chem. Soc. 96, 4500 (1974).CrossRefGoogle Scholar
- b.R. Hershfield and G. L. Schmir, J. Am. Chem. Soc. 95, 7359 (1973).CrossRefGoogle Scholar
- c.T. H. Fife and J. E. C. Hutchins, J. Am. Chem. Soc. 94, 2837 (1972).CrossRefGoogle Scholar
- d.J. Hine, J. C. Craig, Jr., J. G. Underwood, II, and F. A. Via, J. Am. Chem. Soc. 92, 5194 (1970).CrossRefGoogle Scholar
- 19.D. P. Weeks and D. B. Whitney, J. Am. Chem. Soc. 103, 3555 (1981).CrossRefGoogle Scholar
- 20.R. L. Schowen, C. R. Hopper, and C. M. Bazikian, J. Am. Chem. Soc. 94, 3095 (1972).CrossRefGoogle Scholar
- 21.E. Tapuhi and W. P. Jencks, J. Am. Chem. Soc. 104, 5758 (1982).CrossRefGoogle Scholar
- 22.C. M. Evans, R. Glenn, and A. J. Kirby, J. Am. Chem. Soc. 104, 4706 (1982).CrossRefGoogle Scholar
- 23.E. H. Cordes and W. P. Jencks, J. Am. Chem. Soc. 85, 2843 (1963).CrossRefGoogle Scholar
- 24.T. S. Davies, P. D. Feil, D. G. Kubler, and D. J. Wells, Jr., J. Org. Chem. 40, 1478 (1975).CrossRefGoogle Scholar
- 25.L. doAmaral, M. P. Bastos, H. G. Bull, and E. H. Cordes, J. Am. Chem. Soc. 95, 7369 (1973).CrossRefGoogle Scholar