Nucleophilic Substitution

  • Francis A. Carey
  • Richard J. Sundberg

Abstract

It is fair to say that the single reaction that has received the greatest attention of organic chemists is nucleophilic substitution at saturated carbon atoms. The reaction is of great synthetic utility and many individual observations had accumulated before systematic efforts at characterizing the reaction by mechanistic studies began. The task of creating a coherent mechanistic interpretation was undertaken by C. K. Ingold and E. D. Hughes in England in the 1930’s. Their studies laid the basis for current understanding.1 Since those initial investigations, organic chemists have continued to study substitution reactions, and the level of detailed information about this area is greater than for any of the other broad classes of reactions we will consider. The field provides an excellent opportunity to illustrate the application of techniques which provide mechanistic information and also is one where structure of reaction intermediates and transition states has received very careful scrutiny. From these accumulated data a very satisfactory conceptual interpretation has developed. We can provide only a small selection of these details to illustrate the general concepts. The area of nucleophilic substitution will also illustrate clearly the fact that while large conceptual treatments can outline the broad features to be expected for a given system, the precise details will reveal aspects which are characteristic of specific systems. As the chapter unfolds the reader should come to appreciate both the depth and breadth of the general conceptual understanding and the characteristics of some of the individual systems.

Keywords

Nucleophilic Substitution Nucleophilic Substitution Reaction Potential Energy Diagram Phenyl Cation Solvent Nucleophilicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

Nucleophilic Substitution Mechanisms

  1. A. Streitwieser, Jr., Solvolytic Displacement Reactions, McGraw-Hill, New York, 1962.Google Scholar
  2. C. A. Bunton, Nucleophilic Substitution at a Saturated Carbon Atom, Elsevier, New York, 1963.Google Scholar
  3. E. R. Thornton, Solvolysis Mechanisms, Ronald Press, New York, 1964.Google Scholar
  4. T. L. Ho, Hard and Soft Acids and Bases Principle in Organic Chemistry, Academic Press, New York, 1977.Google Scholar

Carbonium Ions

  1. G. A. Olah and P. von R. Schleyer (eds.), Carbonium Ions, Vols. I—IV, Wiley—Interscience, New York, 1968–1973.Google Scholar
  2. D. Bethell and V. Gold, Carbonium Ions, an Introduction, Academic Press, London and New York, 1967.Google Scholar
  3. S. P. McManus and C. U. Pittman, Jr., in Organic Reactive Intermediates, S. P. McManus (ed.), Academic Press, New York, 1973, Chap. 4.Google Scholar
  4. G. A. Olah, Carbocations and Electrophilic Reactions, John Wiley and Sons, New York, 1974.Google Scholar
  5. M. Saunders, J. Chandrasekhar, and P. v. R. Schleyer, in Rearrangements in Ground and Excited States, P. deMayo (ed.), Academic Press, 1980, Chap. 1.Google Scholar

Chapter 5

  1. 1.
    N. C. Deno, J. J. Jaruzelski, and A. Schriesheim, J. Am. Chem. Soc. 77, 3044 (1955).CrossRefGoogle Scholar
  2. 2.
    R. J. Blint, T. B. McMahon, and J. L. Beauchamp, J. Am. Chem. Soc. 96, 1269 (1974).CrossRefGoogle Scholar
  3. 3a.
    R. K. Crossland, W. E. Wells, and V. J. Shiner, Jr., J. Am. Chem. Soc. 93, 4217 (1971).CrossRefGoogle Scholar
  4. b.
    R. L. Buckson and S. G. Smith, J. Org. Chem. 32, 634 (1967).CrossRefGoogle Scholar
  5. c.
    C. J. Norton, Ph. D. Thesis, Harvard University, 1955,Google Scholar
  6. cited by P. v. R. Schleyer, W. E. Watts, R. C. Fort, Jr., M. B. Comisarow, and G. A. Olah, J. Am. Chem. Soc. 86, 5679 (1964).CrossRefGoogle Scholar
  7. d.
    E. N. Peters and H. C. Brown, J. Am. Chem. Soc. 97, 2892 (1975).CrossRefGoogle Scholar
  8. e.
    B. R. Ree and J. C. Martin, J. Am. Chem. Soc. 92, 1660 (1970).CrossRefGoogle Scholar
  9. f.
    F. G. Bordwell and W. T. Brannen, Jr., J. Am. Chem. Soc. 86, 4645 (1964).CrossRefGoogle Scholar
  10. g, h.
    D. D. Roberts, J. Org. Chem. 34, 285 (1969).CrossRefGoogle Scholar
  11. i.
    K. L. Servis and J. D. Roberts, J. Am. Chem. Soc. 87, 1331 (1965).CrossRefGoogle Scholar
  12. j.
    R. G. Lawton, J. Am. Chem. Soc. 83, 2399 (1961).CrossRefGoogle Scholar
  13. k.
    G. M. Bennett, F. Heathcoat, and A. N. Mosses, J. Chem. Soc., 2567 (1929).Google Scholar
  14. 1.
    S. Kim, S. S. Friedrich, L. J. Andrews, and R. M. Keefer, J. Am. Chem. Soc. 92, 5452 (1970).CrossRefGoogle Scholar
  15. 4b.
    D. H. Ball, E. D. M. Eades, and L. Long, Jr., J. Am. Chem. Soc. 86, 3579 (1964).CrossRefGoogle Scholar
  16. c.
    H. G. Richey, Jr. and D. V. Kinsman, Tetrahedron Lett., 2505 (1969).Google Scholar
  17. d.
    P. v. R. Schleyer, W. E. Watts, and C. Cupas, J. Am. Chem. Soc. 86, 2722 (1964).CrossRefGoogle Scholar
  18. e.
    P. E. Peterson and J. E. Duddey, J. Am. Chem. Soc. 85, 2865 (1963).CrossRefGoogle Scholar
  19. f.
    A. Colter, E. C. Friedrich, N. J. Holness, and S. Winstein, J. Am. Chem. Soc. 87, 378 (1965).CrossRefGoogle Scholar
  20. g, h.
    M. Cherest, H. Felkin, J. Sicher, F. Sipos, and M. Tichy, J. Chem. Soc., 2513 (1965).Google Scholar
  21. i.
    J. C. Martin and P. D. Bartlett, J. Am. Chem. Soc. 79, 2533 (1957).CrossRefGoogle Scholar
  22. j.
    S. Archer, T. R. Lewis, M. R. Bell, and J. W. Schulenberg, J. Am. Chem. Soc. 83, 2386 (1961).CrossRefGoogle Scholar
  23. k.
    D. A. Tomalia and J. N. Paige, J. Org. Chem. 38, 422 (1973).CrossRefGoogle Scholar
  24. 1.
    P. Wilder, Jr., and W.-C. Hsieh, J. Org. Chem. 40, 717 (1975).CrossRefGoogle Scholar
  25. m.
    C. W. Jefford, J.-C. Rossier, J. A. Zuber, S. C. Suri, and G. Mehta, Tetrahedron Lett., 4081 (1980).Google Scholar
  26. 5.
    J. L. Fry, E. M. Engler, and P. v. R. Schleyer, J. Am. Chem. Soc. 94, 4628 (1972).CrossRefGoogle Scholar
  27. 6.
    F. G. Bordwell and W. T. Brannen, Jr., J. Am. Chem. Soc. 86, 4645 (1964).CrossRefGoogle Scholar
  28. 7.
    R. Baird and S. Winstein, J. Am. Chem. Soc. 85, 567 (1963).CrossRefGoogle Scholar
  29. 8.
    J. B. Lambert and S. I. Featherman, J. Am. Chem. Soc. 99, 1542 (1977).CrossRefGoogle Scholar
  30. 9a.
    K. Yano, J. Org. Chem. 40, 414 (1975).CrossRefGoogle Scholar
  31. b.
    N. C. Deno, N. Friedman, J. D. Hodge, and J. J. Houser, J. Am. Chem. Soc. 85, 2995 (1963).CrossRefGoogle Scholar
  32. c.
    I. Lillien and L. Handloser, J. Am. Chem. Soc. 93, 1682 (1971).CrossRefGoogle Scholar
  33. d.
    J. C. Barborak and P. v. R. Schleyer, J. Am. Chem. Soc. 92, 3184 (1970);CrossRefGoogle Scholar
  34. P. Ahlberg, C. Engdahl, and G. Jonsäll, J. Am. Chem. Soc. 103, 1583 (1981).CrossRefGoogle Scholar
  35. 10.
    S. Winstein and E. T. Stafford, J. Am. Chem. Soc. 79, 505 (1957).CrossRefGoogle Scholar
  36. 11a.
    M. Brookhart, A. Diaz, and S. Winstein, J. Am. Chem. Soc. 88, 3135 (1966).CrossRefGoogle Scholar
  37. b.
    G. A. Olah, J. M. Bollinger, C. A. Cupas, and J. Lukas, J. Am. Chem. Soc. 89, 2692 (1967).CrossRefGoogle Scholar
  38. c.
    G. A. Olah and R. D. Porter, J. Am. Chem. Soc. 92, 7627 (1970).CrossRefGoogle Scholar
  39. d.
    G. A. Olah and G. Liang, Am. Chem. Soc. 97, 2236 (1975).CrossRefGoogle Scholar
  40. e, f.
    G. A. Olah and G. Liang, J. Am. Chem. Soc. 93, 6873 (1971).CrossRefGoogle Scholar
  41. 12.
    L. A. Paquette, I. R. Dunkin, J. P. Freeman, and P. C. Storm, J. Am. Chem. Soc. 94, 8124 (1972).CrossRefGoogle Scholar
  42. 13.
    J. J. Tufariello and R. J. Lorence, J. Am. Chem. Soc. 91, 1546 (1969);CrossRefGoogle Scholar
  43. J. Lhomme, A. Diaz, and S. Winstein, J. Am. Chem. Soc. 91, 1548 (1969).CrossRefGoogle Scholar
  44. 14a.
    J. W. Wilt and P. J. Chenier, J. Am. Chem. Soc. 90, 7366 (1968);CrossRefGoogle Scholar
  45. S. J. Cristol and G. W. Nachtigall, J. Am. Chem. Soc. 90, 7132, 7133 (1968).CrossRefGoogle Scholar
  46. b.
    H. C. Brown and E. N. Peters, J. Am. Chem. Soc. 97, 1927 (1975).CrossRefGoogle Scholar
  47. c.
    P. G. Gassman and W. C. Pike, J. Am. Chem. Soc. 97, 1250 (1975).CrossRefGoogle Scholar
  48. d.
    I. Tabushi, Y. Tamura, Z. Yoshida, and T. Sugimoto, J. Am. Chem. Soc. 97, 2886 (1975).CrossRefGoogle Scholar
  49. e.
    H. Weiner and R. A. Sneen, J. Am. Chem. Soc. 87, 287 (1965).CrossRefGoogle Scholar
  50. f.
    J. R. Mohrig and K. Keegstra, J. Am. Chem. Soc. 89, 5492 (1967).CrossRefGoogle Scholar
  51. g.
    E. N. Peters and H. C. Brown, J. Am. Chem. Soc. 96, 265 (1974).CrossRefGoogle Scholar
  52. h.
    L. R. C. Barclay, H. R. Sonawane, and J. C. Hudson, Can. J. Chem. 50, 2318 (1972).CrossRefGoogle Scholar
  53. i.
    C. D. Poulter, E. C. Friedrich, and S. Winstein, J. Am. Chem. Soc. 92, 4274 (1970).CrossRefGoogle Scholar
  54. j.
    J. M. Harris, J. R. Moffatt, M. G. Case, F. W. Clarke, J. S. Polley, T. K. Morgan, Jr., T. M. Ford, and R. K. Murray, Jr., J. Org. Chem. 47, 2740 (1982).CrossRefGoogle Scholar
  55. k.
    F. David, J. Org. Chem. 46, 3512 (1981).CrossRefGoogle Scholar
  56. 15.
    W. Franke, H. Schwarz, and D. Stahl, J. Org. Chem. 45, 3493 (1980);CrossRefGoogle Scholar
  57. Y. Apeloig, J. B. Collins, D. Cremer, T. Bally, E. Haselbach, J. A. Pople, J. Chandrasekhar, and P. v. R. Schleyer, J. Org. Chem. 45, 3496 (1980).CrossRefGoogle Scholar
  58. 16.
    J. S. Haywood-Farmer and R. E. Pincock, J. Am. Chem. Soc. 91, 3020 (1969).CrossRefGoogle Scholar
  59. 17.
    G. A. Olah, A. L. Berrier, M. Arvanaghi, and G. K. Surya Prakash, J. Am. Chem. Soc. 103, 1122 (1981).CrossRefGoogle Scholar
  60. 18.
    J. P. Richard and W. P. Jencks, J. Am. Chem. Soc. 104, 4689, 4691 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations