Reciprocal Lattice Spike Topography

  • A. R. Lang
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 63)

Abstract

This topic ‘spike topography’ for short, involves measuring scattered X-ray intensity as a function of position in two spaces: in real space as a function of location of the scattering volume element within the specimen crystal and in reciprocal space as a function of position of the scattering vector relative to a reciprocal lattice point (relp) of the perfect crystal. This chapter touches upon (1) background theory, (2) history of study of the anomalous ‘spike’ diffuse reflexions from diamond, (3) the findings of ‘spike’ topography and (4) likely future developments.

Keywords

Diffuse Reflection Reciprocal Lattice Reciprocal Space Perfect Crystal Acta Cryst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.G. Lipson and H. Lipson (1969) Optical Physics, Cambridge University Press.Google Scholar
  2. 2.
    R.W. James (1954) The Optical Principles of the Diffraction of X-rays, G. Bell and Sons Ltd. London.Google Scholar
  3. 3.
    P.P. Ewald (1940) Proc, Phys. Soc. Lond. 52, 167ADSCrossRefGoogle Scholar
  4. 4.
    C.V. Raman and P. Nilakantan (1940) Proc Indian Acad. Sci., A, 389Google Scholar
  5. 5.
    K. Lonsdale and H. Smith (1941) Nature, Lond. 148, 112ADSCrossRefGoogle Scholar
  6. 6.
    K. Lonsdale (1942) Proc. R. Soc. Lond. A179 315ADSGoogle Scholar
  7. 7.
    R. Robertson, J.J. Fox and A.F. Martin (1934) Phil. Trans. R. Soc. Lond. A 232, 482Google Scholar
  8. 8.
    A. Guinier (1942) Comptes Rend. Acad. Sci. Paris 215, 114Google Scholar
  9. 9.
    J.A. Hoerni and W. A. Wooster (1955) Acta Cryst. 8, 187CrossRefGoogle Scholar
  10. 10.
    F.C. Frank (1956) Proc. R. Soc. Lond. A237, 168ADSGoogle Scholar
  11. 11.
    S. Caticha-Ellis and W. Cochran (1958) Acta Cryst. 11, 245CrossRefGoogle Scholar
  12. 12.
    W. Kaiser and W. L. Bond (1959) Phys. Rev. 115, 857ADSCrossRefGoogle Scholar
  13. 13.
    T. Evans and C. Phaal (1962) Proc. R. Soc. Lond. A270, 535ADSGoogle Scholar
  14. 14.
    A.R. Lang (1964) Proc. Phys. Soc. Lond. 84, 871ADSCrossRefGoogle Scholar
  15. M. Takagi and A.R. Lang (1964) Proc. R. Soc. Lond. A 281, 310ADSGoogle Scholar
  16. 16.
    M. Moore and A.R. Lang (1972) Phil. Mag 25, 219ADSCrossRefGoogle Scholar
  17. 17.
    M. Moore and A.R.Lang (1977) J. Appl. Cryst. 10, 422CrossRefGoogle Scholar
  18. 18.
    S. Suzuki and A.R. Lang (1976) J. Appl. Cryst. 9, 95CrossRefGoogle Scholar
  19. 19.
    S. Suzuki and A.R. Lang (1975) Acta Cryst. A 31, S260Google Scholar
  20. 20.
    Z-H. Mai, S. Mardix and A.R. Lang (1980) J. Appl. Cryst. 13, 180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • A. R. Lang

There are no affiliations available

Personalised recommendations