Changes of State pp 407-461 | Cite as
Solution Growth
Abstract
Crystal growth techniques can be classified into two broad groups—monocomponent and polycomponent methods.* In monocomponent methods only the chemical component forming the crystal is present in the growth system. In polycomponent methods an additional component has been added to the system. The usual reason for adding an additional component is to permit crystallization at a lower temperature than in a monocomponent system.† Among the reasons why crystallization at as low a temperature as possible is advantageous are: (1) to permit the direct growth of low-temperature polymorphs; (2) to avoid incongruent volatilization, incongruent melting, decomposition, or high vapor pressures at high temperature; (3) to minimize thermal gradients, strain caused by such gradients, and hence defects brought about by strain; (4) to reduce vacancy concentration; (5) to lower the solubility of impurities, to minimize reaction with containers, etc.; (6) to permit a dopant distribution impossible at a higher temperature (because of, for example, high dopant vapor pressure); and (7) for experimental convenience.
Keywords
Grown Crystal Solution Growth Yttrium Iron Garnet Flux Evaporation Flux GrowthPreview
Unable to display preview. Download preview PDF.
References
- 1.R. A. Laudise, The Growth of Single Crystals, Prentice-Hall, New York (1970).Google Scholar
- 2.J. J. Gilman (ed.), The Art and Science of Growing Crystals, Wiley, New York (1963).Google Scholar
- 3.H. E. Buckley, Crystal Growth, Wiley, New York (1951).Google Scholar
- 4.R. Roy and W. B. White, J. Cryst. Growth 3/4, 33 (1968).Google Scholar
- 5a.A. Holden and R. H. Thompson, Growing Crystals with a Rotary Crystallizer, Bell Telephone Laboratories, New York (1964).Google Scholar
- 5b.A. Holden and P. Singer, Crystals and Crystal Growing, Anchor-Doubleday, New York (1960).Google Scholar
- 6.T. G. Petrov, E. B. Treivus, and A. P. Kasatkin, Growing Crystals from Solution, Consultants Bureau, New York (1969).Google Scholar
- 7.E. D. Kolb, The Physics of Selenium and Tellurium (W. Charles Cooper, ed.), pp. 155ff, Pergamon, New York (1969).Google Scholar
- 8.E. D. Kolb and R. A. Laudise, J. Cryst. Growth 8, 191–196 (1971).CrossRefGoogle Scholar
- 9.H. K. Henisch, J. Dennis, and J. Hanoka, J. Phys. Chem. Solids 26, 493 (1965).CrossRefGoogle Scholar
- 10.A. F. Armington and J. J. O’Connor, Mat. Res. Bull. 2 (10), 907 (1967).CrossRefGoogle Scholar
- 11.S. D. Scott and H. L. Barnes, Mat. Res. Bull. 4, 897 (1969).CrossRefGoogle Scholar
- 12.A. F. Armington and J. J. O’Connor, J. Cryst. Growth 6, 278 (1970).CrossRefGoogle Scholar
- 13.Y. Toudic and R. Aumont, Compt. Rend. 269, 74 (1969).Google Scholar
- 14.T. Yamamoto, Bull. Inst. Phys. Chem. Res. (Tokyo) 17, 1278 (1938).Google Scholar
- 15.W. E. Gibbs and W. Clayton, Nature 113, 492 (1924).CrossRefGoogle Scholar
- 16.K. Nassau, J. Cryst. Growth, 15, 171 (1972).CrossRefGoogle Scholar
- 17.A. C. Walker and G. T. Kohman, Trans. Am. Inst. Elec. Eng. 67, 565 (1948).CrossRefGoogle Scholar
- 18.A. C. Walker, Bell Labs. Record 25, 357 (1947).Google Scholar
- 19.A. N. Holden, Disc. Faraday Soc. 5, 312 (1949).CrossRefGoogle Scholar
- 20.J. Shiever and K. Nassau, Mat. Res. Bull. 7, 613 (1972).CrossRefGoogle Scholar
- 21.H. K. Henisch, Crystal Growth in Gels, Penn. State Univ. Press, College Park, Pa. (1970).Google Scholar
- 22.H. K. Henisch, J. I. Hanoka, and J. Dennis, J. Electrochem. Soc. 112, 627 (1965).CrossRefGoogle Scholar
- 23.J. J. O’Connor, M. A. DiPietro, A. F. Armington, and B. Rubin, Nature 212, 68 (1966).CrossRefGoogle Scholar
- 24.I. Epelboin, F. Lenoir, and R. Wiart, p. 417; W. A. Schultze, p. 421; U. Bertocci, C. Bertocci, and B. C. Larson, p. 427; and E. Budevski, p. 93; in Crystal Growth 1971 ( R. A. Laudise, J. B. Mullin, and B. Mutaftschiev, eds.), North-Holland, Amsterdam (1972).Google Scholar
- 25.R. A. Laudise and J. W. Neilsen, in Solid State Physics (F. Seitz and D. Turnbull, eds.), Vol. XII, Academic, New York (1961).Google Scholar
- 26.R. A. Laudise, in Progress in Inorganic Chemistry (F. A. Cotton, ed.), Vol. III, p. 1, Wiley-Interscience, New York (1962).Google Scholar
- 27.R. Roy and O. F. Tuttle, Phys. Chem. Earth 1, 138 (1956).CrossRefGoogle Scholar
- 28.C. J. M. Rooymans, in Preparative Methods in Solid State Chemistry (P. Hagenmueller, ed.), pp. 71ff, Academic Press, New York (1972).Google Scholar
- 29.P. W. Bridgman, The Physics of High Pressure, Bell, London (1949).Google Scholar
- 30.E. D. Kolb, U.S. Pat. 3,271,114 (6 Sept. 1966 ).Google Scholar
- 31.G. W. Morey and P. Niggli, J. Am. Chem. Soc. 35, 1086 (1913).CrossRefGoogle Scholar
- 32.O. F. Tuttle, Geol. Soc. Am. Bull. 60, 1727 (1949).CrossRefGoogle Scholar
- 33.R. L. Barns, R. A. Laudise, and R. M. Shields, J. Phys. Chem. 67, 835 (1963).CrossRefGoogle Scholar
- 34.G. Erwin and E. F. Osborne, J. Geol. 59, 385 (1951).Google Scholar
- 35.E. M. Levin, C. R. Robbins, and H. F. McMurdie (eds.), Phase Diagrams for Ceramists,Vol. I (1964), Vol. II (1969), pp. 1926–1928, 4021, American Ceramic Soc.Google Scholar
- 36.R. A. Laudise and A. A. Ballman, J. Am. Chem. Soc. 80, 2655 (1958).CrossRefGoogle Scholar
- 37.R. A. Laudise, J. H. Crocket, and A. A. Ballman, J. Phys. Chem. 65, 359 (1961).CrossRefGoogle Scholar
- 38.R. A. Laudise and E. D. Kolb, Endeavour XXVIII [105], 114–117 (1969).Google Scholar
- 39.R. A. Laudise and A. A. Ballman, J. Phys. Chem. 65, 1396 (1961).CrossRefGoogle Scholar
- 40.D. J. Marshall and R. A. Laudise, J. Cryst. Growth 1, 88 (1967).CrossRefGoogle Scholar
- 41.R. A. Laudise and E. D. Kolb, Am. Miner. 48, 642 (1963).Google Scholar
- 42.D. J. Marshall and R. A. Laudise, Crystal Growth (Suppl. to J. Phys. Chem. Solids), p. 557, Pergamon, New York (1967).Google Scholar
- 43.R. A. Laudise, J. Am. Chem. Soc. 81, 562 (1959).CrossRefGoogle Scholar
- 44.R. A. Laudise and R. A. Sullivan, Chem. Eng. Prog. 55, 55 (1959).Google Scholar
- 45.D. W. Rudd, E. E. Haughton, and W. J. Carrol, Western Electric Engineer 1966 (January), 22.Google Scholar
- 46.D. M. Dodd and D. B. Fraser, J. Phys. Chem. Solids 26, 673 (1965).CrossRefGoogle Scholar
- 47.E. D. Kolb, D. A. Pinnow, T. C. Rich, N. C. Lias, E. E. Grudenski, and R. A. Laudise, Mat. Res. Bull. 7, 397 (1972).CrossRefGoogle Scholar
- 48.R. A. Laudise, E. D. Kolb, N. C. Lias, and E. E. Grudenski, in Proc. IVth All-Union Conf. on Crystal Growth, USSR, 1972,to be published.Google Scholar
- 49.N. C. Lias, E. E. Grudenski, E. D. Kolb, and R. A. Laudise, J. Cryst. Growth, 18, 1 (1973).CrossRefGoogle Scholar
- 50.J. A. Burton and W. P. Slichter, in Transistor Technology (H. E. Bridgers, J. H. Scaff, and J. H. Shive, eds.), Vol. 1, Chapter 5, D. Van Nostrand, Princeton, N.J. (1958).Google Scholar
- 51.R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64, 688 (1960).CrossRefGoogle Scholar
- 52.E. D. Kolb and R. A. Laudise, J. Am. Ceram. Soc. 48, 342 (1965).CrossRefGoogle Scholar
- 53.J. W. Nielsen and F. G. Foster, Am. Miner. 45, 299 (1960).Google Scholar
- 54.E. D. Kolb, D. W. Wood, E. G. Spencer, and R. A. Laudise, J. Appl. Phys. 38, 1027 (1967).CrossRefGoogle Scholar
- 55.E. D. Kolb, D. L. Wood, and R. A. Laudise, J. Appl. Phys. 39, 1362 (1968).CrossRefGoogle Scholar
- 56.L. H. Shick, J. W. Nielsen, A. H. Bobeck, A. J. Kurtzig, P. C. Michaelis, and J. P. Reekstin, Appl. Phys. Letters, 18, 89 (1971).CrossRefGoogle Scholar
- 57.R. A. Laudise, J. Cryst. Growth 13/14, 27 (1971).Google Scholar
- 58.E. D. Kolb and R. A. Laudise, J. Cryst. Growth 8, 191 (1971).CrossRefGoogle Scholar
- 59.R. A. Laudise, in The Art and Science of Growing Crystals (J. J. Gilman, ed.), pp. 252ff., Wiley, New York (1963).Google Scholar
- 60.E. A. D. White, in Technique of Inorganic Chemistry (H. B. Jonassen and A. Weissberger, eds.), Vol. IV, pp. 31ff, Interscience, New York (1965).Google Scholar
- 61.Y. Laurent, Rev. Chem. Mineral 6, 1145 (1969).Google Scholar
- 62.J. W. Nielsen, in Proc. IVth All-Union Conf. on Crystal Growth, USSR, 1972,to be published.Google Scholar
- 63.H. J. Van Hook, J. Am. Ceram. Soc. 44, 208 (1961).CrossRefGoogle Scholar
- 64.A. H. Bobeck, Bell System Tech. J. 46, 1901 (1967).Google Scholar
- 65.J. W. Nielsen and E. F. Dearborn, J. Phys. Chem. Solids 5, 202 (1968).CrossRefGoogle Scholar
- 66.J. W. Nielsen, J. Appl. Phys. 31, 51S (1960).CrossRefGoogle Scholar
- 67.R. C. Linares, J. Am. Ceram. Soc. 45, 307 (1962).CrossRefGoogle Scholar
- 68.W. H. Grodkiewicz, E. F. Dearborn, and L. G. Van Uitert, in Crystal Growth ( H. S. Peiser, ed.), p. 441, Pergamon, New York (1967).Google Scholar
- 69.J. P. Remeika, J. Am. Chem. Soc. 76, 940 (1954).CrossRefGoogle Scholar
- 70.R. A. Lefever, J. W. Torpy, and A. B. Chase, J. Appl. Phys. 32, 962 (1961).CrossRefGoogle Scholar
- 71.J. Hart and E. A. D. White, unpublished work, reported in E. A. D. White, Ref. 64.Google Scholar
- 72.J. P. Remeika, J. Am. Chem. Soc. 78, 4259 (1956).CrossRefGoogle Scholar
- 73.W. H. Grodkiewicz and D. J. Nitti, J. Am. Ceram. Soc. 49, 576 (1966).CrossRefGoogle Scholar
- 74.F. Jona, G. Shirane, and R. Pepinsky, Phys. Rev. 97, 1584 (1955).CrossRefGoogle Scholar
- 75.H. J. Scheel, to be published, reported by Nielsen, Ref. 62.Google Scholar
- 76.H. Scholz and R. Kluckow, in Crystal Growth ( H. S. Peiser, ed.), p. 475, Pergamon, New York (1967).Google Scholar
- 77.W. Hintzman and G. Mueller-Vogt, J. Cryst. Growth 5, 274 (1969).CrossRefGoogle Scholar
- 78.H. J. Scheel, J. Cryst. Growth 13/14, 560 (1972).Google Scholar
- 79.H. J. Scheel, Oral presentation, ICCG-3, Marseille, July 1971.Google Scholar
- 80.H. J. Scheel and E. O. Schulz-DuBois, J. Cryst. Growth 8, 304 (1972).CrossRefGoogle Scholar
- 81.W. Tolksdorf and E. Welz, J. Cryst. Growth 13/14, 566 (1972).Google Scholar
- 82.R. Roy, in Crystal Growth ( H. S. Peiser, ed.), p. 505, Pergamon, New York (1967).Google Scholar
- 83.L. M. Viting, Vestn. Mosk. Univ. Ser. II Khim. 20 (4), 54 (1965).Google Scholar
- 84.R. A. Laudise, R. C. Linares, and E. F. Dearborn, J. Appl. Phys. Suppl. 33, 1362 (1962).CrossRefGoogle Scholar
- 85.W. A. Bonner, E. F. Dearborn, and L. G. Van Uitert, in Crystal Growth ( H. S. Peiser, ed.), p. 437, Pergamon, Oxford (1967).Google Scholar
- 86.P. W. Whipps, J. Cryst. Growth 12, 120 (1972).CrossRefGoogle Scholar
- 87.C. E. Miller, J. Appl. Phys. 29, 233 (1958).CrossRefGoogle Scholar
- 88.V. Belruss, J. Kalnajs, and A. Linz, Mat. Res. Bull. 6, 899 (1971).CrossRefGoogle Scholar
- 89a.D. S. Perloff and A. Wold, in Crystal Growth ( H. S. Peiser, ed.), p. 361, Pergamon, New York (1967).Google Scholar
- 89b.W. Kunnman, in Preparation and Properties of Solid State Materials (R. A. Lefever, ed.), pp. 1ff, Dekker, New York (1971)Google Scholar
- 90.F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Nature 176, 51 (1955).CrossRefGoogle Scholar
- 91.F. P. Bundy, in Modern Very High Pressure Techniques ( R. H. Wentorf, Jr., ed.), Butterworth, London (1962).Google Scholar
- 92.R. E. Hanneman, H. M. Strong, and F. P. Bundy, Science 155, 995 (1967).CrossRefGoogle Scholar
- 93.H. T. Hall, Rev. Sci. Instr. 31, 125 (1960).CrossRefGoogle Scholar
- 94.H. M. Strong and R. H. Wentorf, Jr., Naturwiss. 59 [1], 1 (1972).CrossRefGoogle Scholar
- 95.G. Wolff, P. H. Keck, and J. D. Broder, Phys. Rev. 94, 753 (1954).Google Scholar
- 96.G. Wolff, R. A. Herbert, and J. D. Broder, Semiconductors and Phosphors, pp. 463ff, Wiley-Interscience, New York (1958).Google Scholar
- 97.J. F. Miller, in Compound Semiconductors (R. K. Willardson and H. L. Goering, eds.), Vol. I, pp. 200ff, Reinhold, New York (1962).Google Scholar
- 98.D. G. Thomas, M. Gershenzon, and F. A. Trumbore, Phys. Rev. 133, A269 (1964).CrossRefGoogle Scholar
- 99.H. Nelson, RCA Rev. 24, 603 (1963).Google Scholar
- 100.M. R. Lorenz and M. Pilkuhn, J. Appl. Phys. 37, 4094 (1966).CrossRefGoogle Scholar
- 101.F. A. Trumbore, M. Kowalchik, and H. G. White, J. Appl. Phys. 38, 1987 (1967).CrossRefGoogle Scholar
- 102.R. A. Logan, H. G. White, and F. A. Trumbore, Appl. Phys. Letters 10, 206 (1967).CrossRefGoogle Scholar
- 103.R. C. Linares, J. Cryst. Growth 3/4, 443 (1968).Google Scholar
- 104.H. J. Levinstein, S. Licht, R. W. Landorf, and S. L. Blank, Appl. Phys. Letters 19, 486 (1971).CrossRefGoogle Scholar
- 105.W. G. Pfann, Trans. AIME 203, 961 (1955).Google Scholar
- 106.A. I. Mlaysky and M. Weinstein, J. Appl. Phys. 34, 2885 (1963).CrossRefGoogle Scholar
- 107.L. B. Griffiths and A. I. Mlaysky, J. Electrochem. Soc. 111, 805 (1964).CrossRefGoogle Scholar
- 108.W. G. Pfann, Zone Melting, 2nd ed., pp. 254ff, Wiley, New York (1966).Google Scholar
- 109.J. D. Broder and G. A. Wolff, J. Electrochem. Soc. 110, 1150 (1963).CrossRefGoogle Scholar
- 110.T. S. Plaskett, S. E. Blum, and L. M. Foster, J. Electrochem. Soc. 114, 1303 (1967).CrossRefGoogle Scholar
- 111.R. S. Wagner and W. C. Ellis, Trans. AIME 233, 1053 (1965).Google Scholar
- 112.R. S. Wagner and C. J. Doherty, J. Electrochem. Soc. 113, 1300 (1967).CrossRefGoogle Scholar
- 113.R. L. Barns and W. C. Ellis, J. Appl. Phys. 36, 2296 (1965).CrossRefGoogle Scholar
- 114.C. M. Wolfe, C. J. Nuese, and N. Holonyak, J. Appl. Phys. 36, 3790 (1965).CrossRefGoogle Scholar
- 115.R. S. Wagner, in Whisker Technology ( A. P. Levite, ed.), Wiley, New York (1969).Google Scholar