Changes of State pp 283-323 | Cite as
Growth from the Vapor
Abstract
Growth from the vapor for preparing materials, particularly in the form of thin films, has become an extremely important technique. Probably the best example is its extensive use in the fabrication of silicon semiconductor devices and integrated circuits. Chemical vapor deposition is used to prepare the high-purity polycrystalline silicon, which is then melt-grown into single crystals. Thin silicon films, in which the actual devices and circuits are formed, are grown on slices of these crystals by chemical vapor deposition. Thin layers of silicon dioxide and silicon nitride are vapor-deposited for insulation and surface passivation. Finally, metal interconnect patterns are deposited, generally by vacuum evaporation. Chemical vapor deposition is also used for preparing high-purity metals, such as titanium, zirconium, hafnium, thorium, and chromium, and for a wide variety of other materials. Vacuum evaporation is used for depositing thin layers of many materials for surface coatings. The important present and potential uses of vapor deposition have spurred extensive research on these processes during the past decade. This chapter will discuss the general principles of growth from the vapor. Particular emphasis will be placed on the relative contributions of thermodynamic and kinetic factors to vapor deposition processes. Application of these principles will be illustrated using vapor-phase epitaxial growth as an example.
Keywords
Partial Pressure Deposition Rate Epitaxial Growth Gallium Arsenide Deposition SurfacePreview
Unable to display preview. Download preview PDF.
References
- 1.D. R. Stull and G. C. Sinke, Thermodynamic Properties of the Elements, American Chemical Society, Washington, D.C. (1956).Google Scholar
- 2.D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., National Bureau of Standards, No. NSRDS-NBS 37 (June 1971).Google Scholar
- 3.F. Rossini, D. Wagman, W. Evans, S. Levine, and I. Jaffe, National Bureau of Standards Circular 500 (1952).Google Scholar
- 4.D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, “Selected Values of Thermochemical Properties,” National Bureau of Standards Technical Note 270–3 (1968).Google Scholar
- 5.A. Glassner, “Thermochemical Properties of the Oxides, Fluorides, and Chlorides to 2500 K,” U.S. Atomic Energy Commission ANL-5750 (1960).Google Scholar
- 6.K. K. Kelley, U.S. Bureau of Mines Bulletin 477 (1950).Google Scholar
- 7.K. K. Kelley, U.S. Bureau of Mines Bulletin 584 (1960).Google Scholar
- 8.K. K. Kelley and E. G. King, U.S. Bureau of Mines Bulletin 592 (1961).Google Scholar
- 9.O. Kubaschewski and E. L. Evans, Metallurgical Thermochemistry, Pergamon Press, London (1958).Google Scholar
- 10.W. B. White, S. M. Johnson, and G. B. Danzig, Chemical equilibrium in complex mixtures, J. Chem. Phys. 28, 751–755 (1958).CrossRefGoogle Scholar
- 11.W. D. Madeley and J. M. Toguri, Computing chemical equilibrium compositions in multiphase systems, Ind. Eng. Chem. Fund. 12, 261–2 (1973).CrossRefGoogle Scholar
- 12.F. P. Boynton, Chemical equilibrium in multicomponent polyphase systems, J. Chem. Phys. 32, 1880–1881 (1959).CrossRefGoogle Scholar
- 13.R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).Google Scholar
- 14.R. F. Lever, The equilibrium behavior of the silicon-hydrogen-chlorine system, IBM J. Res. Develop. 8, 460–465 (1965).CrossRefGoogle Scholar
- 15.M. J. Harper and T. J. Lewis, “Thermodynamics of the Chlorine-HydrogenSilicon System,” Great Britain Explosives Research and Development Establishment Report ERDE 6/M/66, Waltham, England (June 1966).Google Scholar
- 16.L. P. Hunt and E. Sirtl, in Chemical Vapor Deposition ( J. M. Blocker, Jr. and J. C. Withers, ed.), Electrochemical Society, Princeton, New Jersey (1970), pp. 3–24.Google Scholar
- 17.L. P. Hunt and E. Sirtl, A thorough thermodynamic evaluation of the siliconhydrogen-chlorine system, J. Electrochem. Soc. 119, 1741–1745 (1972).CrossRefGoogle Scholar
- 18.T. O. Sedgwick, Analysis of the hydrogen reduction of silicon tetrachloride process on the basis of a quasi-equilibrium model, J. Electrochem. Soc. 111, 1381–1383 (1964).CrossRefGoogle Scholar
- 19.D. W. Shaw, in Crystal Growth-Theory and Techniques (C. H. L. Goodman, ed.), Vol. 1, Plenum, London (1974), pp. 1–48.Google Scholar
- 20.R. W. Andrews, D. M. Rynne, and E. G. White, Effect of reactor geometry on growth rate of epitaxial silicon, Solid State Tech. 1969, 61–66.Google Scholar
- 21.W. H. Shepherd, Vapor phase deposition and etching of silicon, J. Electrochem. Soc. 112, 988–994 (1965).CrossRefGoogle Scholar
- 22.H. C. Theuerer, Epitaxial silicon films by the hydrogen reduction of SiCI4, J. Electrochem. Soc. 108, 649–653 (1961).CrossRefGoogle Scholar
- 23.E. G. Bylander, Kinetics of silicon crystal growth from SiCl4 decomposition, J. Electrochem. Soc. 109, 1171–1175 (1962).CrossRefGoogle Scholar
- 24.E. G. Alexander, A surface reaction approach to the growth kinetics of epitaxial silicon from SiC14, J. Electrochem. Soc. 114, 65C (1967).Google Scholar
- 25.W. Runyan, in Semiconductor Silicon ( R. R. Haberecht and E. L. Kern, eds.), Electrochemical Society, Princeton, New Jersey (1969), pp. 169–188.Google Scholar
- 26.S. K. Tung, The effects of substrate orientation on epitaxial growth, J. Electrochem. Soc. 112, 436–438 (1965).CrossRefGoogle Scholar
- 27.M. E. Jones, in Reactivity of Solids (J. W. Mitchell, R. C. Devries, R. W. Roberts, and P. Cannon, eds.), Wiley, New York (1969), pp. 433–451.Google Scholar
- 28.S. E. Bradshaw, The kinetics of epitaxial silicon deposition by the hydrogen reduction of chlorosilanes, Int. J. Electronics 21, 205–227 (1966).CrossRefGoogle Scholar
- 29.S. E. Bradshaw, The effects of gas pressure and velocity on epitaxial silicon deposition by the hydrogen reduction of chlorosilanes, Int. J. Electronics 23, 381–391 (1967).CrossRefGoogle Scholar
- 30.F. C. Eversteyn, P. J. W. Severin, C. H. J. v. d. Brekel, and H. L. Peek, A stagnant layer model for the epitaxial growth of silicon from silane in a horizontal reactor, J. Electrochem. Soc. 117, 925–391 (1970).CrossRefGoogle Scholar
- 31.K. Sugawara, Silicon epitaxial growth by rotating disc method, J. Electrochem. Soc. 119, 1740–1760 (1972).CrossRefGoogle Scholar
- 32.R. Takahashi, Y. Koga, and K. Sugawara, Gas flow pattern and mass transfer analysis in a horizontal flow reactor for chemical vapor deposition, J. Electrochem. Soc. 119, 1406–1412 (1972).CrossRefGoogle Scholar
- 33.J. P. Dismukes and B. J. Curtis, in Semiconductor Silicon 1973 ( H. R. Huff and R. R. Burgess, eds.), Electrochemical Society, Princeton, New Jersey (1973), pp. 258–270.Google Scholar
- 34.R. R. Fergusson and T. Gabor, The transport of gallium arsenide in the vapor phase by chemical reaction, J. Electrochem. Soc. 111, 585–592 (1964).CrossRefGoogle Scholar
- 35.H. Seki, K. Moriyama, I. Askakawa, and S. Horie, Thermodynamics study of transport and epitaxial growth of GaAs in an open tube, Japan J. Appl. Phys. 7, 1324–1331 (1968).CrossRefGoogle Scholar
- 36.D. T. J. Hurle and J. B. Mullin, Thermodynamics of gas-phase equilibria: the Ga: As:C1:H system, J. Phys. Chem. Solids, Suppl.1, p. 241 (1967).Google Scholar
- 37.V. S. Ban, Mass spectrometric studies of vapor phase crystal growth, J. Electrochem. Soc. 118, 1473–1478 (1971).CrossRefGoogle Scholar
- 38.D. W. Shaw, Epitaxial GaAs kinetic studies: 10011 orientation, J. Electrochem. Soc. 117, 683–687 (1970).CrossRefGoogle Scholar
- 39.D. W. Shaw, Influence of substrate temperature on GaAs epitaxial deposition rates. J. Electrochem. Soc. 115, 405–408 (1968).CrossRefGoogle Scholar
- 40.D. W. Shaw, Kinetics of transport and epitaxial growth of GaAs with a Ga—AsC13 system, J. Cryst. Growth 8, 117–128 (1971).CrossRefGoogle Scholar
- 41.I. A. Sheka, I. S. Chaus, and T. T. Mityureva, Chemistry of Gallium, Elsevier, Amsterdam (1966).Google Scholar
- 42.B. G. Secrest, W. W. Boyd, and D. W. Shaw, Application of the finite element method to mass transport limited epitaxial growth processes, J. Cryst. Growth 10, 251–259 (1971).CrossRefGoogle Scholar